Find a Research Lab

Research Lab Results

Results per page:

  • Ken Witwer Laboratory

    The Ken Witwer Laboratory investigates extracellular vesicles and RNA in the context of HIV infection and inflammatory disease. We are also actively assessing the effects of diet on extracellular RNA as a potential therapeutic approach.
  • Stephen Gould Laboratory

    The Gould Laboratory studies vesicles, known as exosomes and microvesicles (EMVs), that can be taken up by neighboring cells, completing a pathway of intercellular vesicle traffic. Our laboratory studies the molecular mechanisms of EMV biogenesis and uptake, and their contributions to cell polarity, cell-to-cell interactions, and intercellular signaling. We also examine the ways in which HIV and other retroviruses use the exosome biogenesis pathway for the formation of infectious virions, and the consequences of their EMV origin.

    Principal Investigator

    Stephen J. Gould, PhD

    Department

    Biological Chemistry

  • Haughey Lab: Neurodegenerative and Neuroinfectious Disease

    Dr. Haughey directs a disease-oriented research program that address questions in basic neurobiology, and clinical neurology. The primary research interests of the laboratory are: 1. To identify biomarkers markers for neurodegenerative diseases including HIV-Associated Neurocognitive Disorders, Multiple Sclerosis, and Alzheimer’s disease. In these studies, blood and cerebral spinal fluid samples obtained from ongoing clinical studies are analyzed for metabolic profiles through a variety of biochemical, mass spectrometry and bioinformatic techniques. These biomarkers can then be used in the diagnosis of disease, as prognostic indicators to predict disease trajectory, or as surrogate markers to track the effectiveness of disease modifying interventions. 2. To better understand how the lipid components of neuronal, and glial membranes interact with proteins to regulate signal transduction associated with differentiation, motility, inflammatory signaling, survival, and neuronal excitability. 3. To understand how extracellular vesicles (exosomes) released from brain resident cells regulate neuronal excitability, neural network activity, and peripheral immune responses to central nervous system damage and infections. 4. To develop small molecule therapeutics that regulate lipid metabolism as a neuroprotective and restorative strategy for neurodegenerative conditions.
    Lab Website

    Principal Investigator

    Norman Haughey, PhD

    Department

    Neurology

    Neurosurgery