Find a Research Lab

Research Lab Results

Results per page:

  • David Linden Lab

    The David Linden Laboratory has used both electrode and optical recording in cerebellar slice and culture model systems to explore the molecular requirements for induction and expression of these phenomena. Along the way, we discovered a new form of plasticity. In addition, we have expanded our analysis to include use-dependent synaptic and non-synaptic plasticity in the cerebellar output structure, the deep nuclei. Our investigations are central to understanding the cellular substrates of information storage in a brain area where the behavioral relevance of the inputs and outputs is unusually well defined. In addition, our investigations have potential clinical relevance for cerebellar motor disorders and for disorders of learning and memory generally.

    Principal Investigator

    David J. Linden, PhD

    Department

    Neuroscience

  • Vikram Chib Lab

    The goals of the Vikram Chib Lab are to understand how the nervous system organizes the control of movement and how incentives motivate our behaviors. To better understand neurobiological control, our researchers are seeking to understand how motivational cues drive our motor actions. We use an interdisciplinary approach that combines robotics with the fields of neuroscience and economics to examine neuroeconomics and decision making, motion and force control, haptics and motor learning, image-guided surgery and soft-tissue mechanics.
    Lab Website

    Principal Investigator

    Vikram S. Chib, PhD

    Department

    Biomedical Engineering

  • Neuro-Oncology Surgical Outcomes Laboratory

    Directed by Debraj “Raj” Mukherjee, MD, MPH, the laboratory focuses on improving access to care, reducing disparities, maximizing surgical outcomes, and optimizing quality of life for patients with brain and skull base tumors.

    The laboratory achieves these aims by creating and analyzing institutional and national databases, developing and validating novel patient-centered quality of life instruments, leveraging machine learning and artificial intelligence platforms to risk-stratify vulnerable patient populations, and designing novel surgical trials to push the boundaries of neurosurgical innovation.

    Our research also investigates novel approaches to improve neurosurgical medical education including studying the utility of video-based surgical coaching and the design of new operative instrumentation.

    Principal Investigator

    Raj Mukherjee, MD MPH

    Department

    Neurology

    Neurosurgery

  • Mark Dredze Lab

    The Mark Dredze Lab investigates topics such as natural language processing, speech, machine learning and intelligent user interfaces. Our team is currently exploring several key health information applications, including information extraction from social media and biomedical and clinical texts. Our recent research in these areas include vaccine communication during the Disneyland measles outbreak; the validity of online drug forums for estimating trends in drug use; and the use of Twitter to examine social rationales for vaccine refusal.

    Principal Investigator

    Mark H. Dredze, PhD

  • Suchi Saria Lab

    The Suchi Saria Lab, part of the Institute for Computational Medicine, explores topics within the fields of machine learning and computational statistics, with a focus on computational solutions for problems in health informatics. Our team investigates the applications of machine learning and computational statistics to domains where one has to draw inferences from observing a complex, real-world system evolve over time. We use Bayesian and probabilistic graphical modeling approaches to address the challenges that emerge with modeling and prediction in real-world temporal systems.

    Principal Investigator

    Suchi Saria, PhD

  • Paul Worley Lab

    The Paul Worley Lab examines the molecular basis of learning and memory. In particular, we cloned a set of immediate early genes (IEGs) that are rapidly transcribed in neurons involved in information processing, and that are essential for long term memory. IEG proteins can directly modify synapses and provide insight into cellular mechanisms that support synapse-specific plasticity.
    Lab Website

    Principal Investigator

    Paul F. Worley, MD

    Department

    Neuroscience

  • Motion Analysis Laboratory

    Our team is focused on understanding how complex movements are normally learned and controlled, and how damage to specific brain areas impairs these processes. We employ several techniques to quantify movement including: 3-dimensional tracking and reconstruction of movement, recordings of muscle activity, force plate recordings, and calculation of joint forces and torques. These techniques allow for very precise measurements of many different types of movements including: walking, reaching, leg movements, hand movements and standing balance. All studies are designed to test specific hypotheses about the function of different brain areas, the cause of specific impairments and/or the effects of different interventions.
  • Albert Lau Lab

    The Lau Lab uses a combination of computational and experimental approaches to study the atomic and molecular details governing the function of protein complexes involved in intercellular communication. We study ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels that mediate the majority of excitatory synaptic transmission in the central nervous system. iGluRs are important in synaptic plasticity, which underlies learning and memory. Receptor dysfunction has been implicated in a number of neurological disorders.
  • Bakker Memory Lab

    Research in the Bakker Memory Laboratory is focused on understanding the mechanisms and brain networks underlying human cognition with a specific focus on the mechanisms underlying learning and memory and the changes in memory that occur with aging and disease. We use a variety of techniques including neuropsychological assessments, experimental behavioral assessments and particularly advanced neuroimaging methods to study these questions in young and older adults and patients with mild cognitive impairment, Alzheimer’s disease, Parkinson’s disease and epilepsy. Through our collaborations with investigators in both basic science and clinical departments, including the departments of Psychiatry and Behavioral Sciences, Psychological and Brain Sciences, Neurology and Public Health, our research also focuses on brain systems involved in spatial navigation and decision-making as well as cognitive impairment in neuropsychiatric conditions such as schizophrenia, eating disorders, obsessive-compulsive disorders, depression and anxiety.
  • Zanvyl Krieger Mind/Brain Institute

    The Zanvyl Krieger Mind/Brain Institute is dedicated to the study of the neural mechanisms of higher brain functions using modern neurophysiological, anatomical and computational techniques. Our researchers use various approaches to understand information processing and its influence on perception, memory, abstract thought, complex behavior and consciousness. Systems and cognitive laboratories use neurophysiology, brain imaging and psychophysics to develop a quantitative, network-level understanding of cognitive information processing. Other researchers use analytical approaches such as system identification, dimensionality reduction, information theory and network modeling to understand information processing. Other areas of research in the Institute include the study of how visual and tactile information processing leads to perception and understanding of two- and three-dimensional objects. Another focus is on neural processing and recognition of speech and other complex sounds. Still other laboratories study neural mechanisms of attention, memory formation, motor learning, decision-making and executive control of behavior.
    Lab Website

    Principal Investigator

    Ed Connor, PhD

    Department

    Neuroscience