Research Lab Results
-
Seydoux Lab
The Seydoux Lab studies the earliest stages of embryogenesis to understand how single-celled eggs develop into complex multicellular embryos. We focus on the choice between soma and germline, one of the first developmental decisions faced by embryos. Our goal is to identify and characterize the molecular mechanisms that activate embryonic development, polarize embryos, and distinguish between somatic and germline cells, using Caenorhabditis elegans as a model system. Our research program is divided into three areas: oocyte-to-embryo transition, embryonic polarity and soma-germline dichotomy. -
Svetlana Lutsenko Laboratory
The research in the Svetlana Lutsenko Laboratory is focused on the molecular mechanisms that regulate copper concentration in normal and diseased human cells. Copper is essential for human cell homeostasis. It is required for embryonic development and neuronal function, and the disruption of copper transport in human cells results in severe multisystem disorders, such as Menkes disease and Wilson's disease. To understand the molecular mechanisms of copper homeostasis in normal and diseased human cells, we utilize a multidisciplinary approach involving biochemical and biophysical studies of molecules involved in copper transport, cell biological studies of copper signaling, and analysis of copper-induced pathologies using Wilson's disease gene knock-out mice. -
Andrew Laboratory: Center for Cell Dynamics
Researchers in the Center for Cell Dynamics study spatially and temporally regulated molecular events in living cells, tissues and organisms. The team develops and applies innovative biosensors and imaging techniques to monitor dozens of critical signaling pathways in real time. The new tools help them investigate the fundamental cellular behaviors that underlie embryonic development, wound healing, cancer progression, and functions of the immune and nervous systems.