Find a Research Lab

Research Lab Results

Results per page:

  • Computational Neuroscience Laboratory

    In the computational neuroscience Laboratory, we construct quantitative models of biological nervous systems that are firmly based on their neurophysiology, neuroanatomy and behavior, and that are developed in close interaction with experimentalists. Our main interest is neuronal function at the system level, reflecting the interaction of subsystems to generate useful behavior. Modeling is particularly important for understanding this and other system-level functions, since it requires the interaction of several pathways and neural functions. One of the functions we study is selective attention--that is, the capability of higher animals to scan sensory input for the most important information and to discard all other. Models of the neuronal basis of visual selective attention are constructed by simulating them on digital computers and comparing the results with data obtained from the visual and somatosensory systems of primates. We pay particular attention to the mechanisms involving the implementation of neural mechanisms that make use of the temporal structure of neuronal firing, rather than just the average firing rate.
    Lab Website

    Principal Investigator

    Ernst Niebur, PhD

    Department

    Neuroscience

  • Adam D. Sylvester Lab

    Research in the Adam D. Sylvester Lab primarily focuses on the way in which humans and primates move through the environment, with the aim of reconstructing the locomotor repertoire of extinct hominins and other primates. We use a quantitative approach that involves the statistical analysis of three-dimensional biological shapes, specifically musculoskeletal structures, and then link the anatomy to function and function to locomotor behavior.

    Principal Investigator

    Adam Sylvester, PhD

    Department

    Functional Anatomy and Evolution

  • Michael Caterina Lab

    The Caterina lab is focused on dissecting mechanisms underlying acute and chronic pain sensation. We use a wide range of approaches, including mouse genetics, imaging, electrophysiology, behavior, cell culture, biochemistry and neuroanatomy to tease apart the molecular and cellular contributors to pathological pain sensation. A few of the current projects in the lab focus on defining the roles of specific subpopulations of neuronal and non-neuronal cells to pain sensation, defining the role of RNA binding proteins in the development and maintenance of neuropathic pain, and understanding how rare skin diseases known as palmoplantar keratodermas lead to severe pain in the hands and feet.

    Principal Investigator

    Michael Caterina, MD PhD

    Department

    Neurosurgery