Research Lab Results
-
Paul Rothman Lab
Research in the Paul Rothman Lab has focused on cytokines. We’ve investigated the role these molecules play in the normal development of blood cells as well as the abnormal blood-cell development that leads to leukemia. We’ve also studied the function of cytokines in immune system responses to asthma and allergies. -
Antoine Azar Lab
The Antoine Azar Lab conducts research on topics related to primary immunodeficiency diseases, allergies and lung disease. Specifically, we explore the role of primary immunodeficiency in certain difficult-to-treat chronic lung diseases, such as COPD, emphysema and asthma. -
David MacGlashan Laboratory
Research in the Donald MacGlashan Laboratory aims to understand the regulation of secretion from human basophils and mast cells—two cells thought to play key roles in allergic reactions and other diseases. The hallmark reaction in these cells is degranulation through cell-bound IgE. Our interests lie in the signaling mechanisms that control this dramatic cell response and the factors that regulate the degree of the reaction. -
Li Gao Lab
The Li Gao Lab researches functional genomics, molecular genetics and epigenetics of complex cardiopulmonary and allergic diseases, with a focus on translational research applying fundamental genetic insight into the clinical setting. Current research includes implementation of high-throughput technologies in the fields of genome-wide association studies (GWAS), massively parallel sequencing, gene expression analysis, epigenetic mapping and integrative genomics in ongoing research of complex lung diseases and allergic diseases including asthma, atopic dermatitis (AD), pulmonary arterial hypertension, COPD, sepsis and acute lung injury/ARDS; and epigenetic contributions to pulmonary arterial hypertension associated with systemic sclerosis. -
Nadia Hansel Lab
Research in the Nadia Hansel Lab investigates the clinical, pathophysiologic and public health aspects of pulmonary diseases, with a focus on asthma and chronic obstructive pulmonary disease (COPD). We have explored how environmental exposures, nutrition and diet, comorbidity and other factors influence the outcomes of diseases such as asthma and COPD. -
Nicola Heller Lab
Research in the Nicola Heller Lab focuses on the immunobiology of macrophages. Our team explores how these cells impact diseases with an inflammatory element, such as cancer, cardiovascular disease and obesity. Using a variety of techniques, including molecular and cellular biology, biochemistry, mouse models and more, we study the role of IL-4/IL-13 signaling in asthma and allergic disease, as well as the role of alternatively activated macrophages (AAM) in the pathogenesis of allergic inflammation. Currently, we are researching the links between asthma and obesity, with a focus on the roles of gender and race. -
Sarbjit Saini Lab
The research in the Sarbjit Saini Laboratory focuses on IgE receptor biology and IgE receptor-mediated activation of blood basophils and mast cells. We have examined the role of IgE receptor expression and activation in allergic airways disease, anaphylaxis and chronic urticaria. Our research has been supported by the NIH, American Lung Association and the AAAAI. Our current research interests have focused mechanisms of diease in allergic asthma, allergic rhinitis and also translational studies in chronic idiopathic urticaria. -
Gregory Diette Laboratory
The Gregory Diette Laboratory studies the epidemiology of lung diseases. Our focus is on asthma, chronic obstructive pulmonary disease (COPD) and environmental causes of lung disease, including allergens and particulate matter. -
Jody Tversky Lab
The Jody Tversky Lab studies dendritic cells in allergy and immunotherapy; cluster immunotherapy clinical observations and immune tolerance; and clinical diagnostic sensitivity of 10 allergy skin prick devices. -
John Schroeder Lab
The John Schroeder Lab focuses on understanding the role human basophils and mast cells play in allergic reactions, as it relates not only to their secretion of potent inflammatory mediators (e.g., histamine and leukotriene C4) but also to their production of pro-inflammatory cytokines. We have long utilized human cells rather than cell lines in order to address the parameters, signal transduction and pharmacological aspects underlying clinically relevant basophil and mast cell responses. As a result, the lab has established protocols for rapidly isolating large numbers of basophils at high purity from human blood and for growing culture-derived mast cells/basophils from human progenitor cells. A variety of assays and techniques are also in place for concurrently detecting cytokines and mediators following a wide range of stimuli. These have facilitated the in vitro testing of numerous anti-allergic drugs for inhibitory activity on basophil and mast cell activation. The lab also studies counter-regulation between the IgE and innate immune receptors on human immature dendritic cell subtypes.