Find a Research Lab

Research Lab Results

Results per page:

  • JHU NIMH Research Center

    The Johns Hopkins NIMH Center is comprised of an interdisciplinary research team who has pooled their talents to study the nature of HIV-associated neurocognitive disorders (HAND). Their aim is to translate discoveries of the pathophysiological mechanisms into novel therapeutics for HAND.Our objectives are to integrate aspects of ongoing research in HAND and SIV encephalitis; to develop high-throughput and screening assays for identifying novel therapeutic compounds; to use proteomics and lipidomics approaches to indentifying surrogate markers of disease activity; to disseminate information and education about HAND through existing and new educational systems, including the JHU AIDS Education Training Center and the JHU Center for Global Clinical Education and to facilitate the entry of new investigators into neuro-AIDS research, and to catalyze new areas of research, particularly where relevant for drug discovery or the development of validated surrogate markers.
    Lab Website

    Principal Investigator

    Justin Charles McArthur, MBBS

    Department

    Neurology

  • Ronald Schnaar Lab

    The Ronald Schnaar Lab is involved in the rapidly expanding field of glycobiology, which studies cell surface glycans, lectins, and their roles in cell physiology. Current projects in our lab study include (1) Glycans and glycan-binding proteins in inflammatory lung diseases, (2) Ganglioside function in the brain, and (3) HIV-Tat and HIV-associated neurocognitive disorders.

    Principal Investigator

    Ron Lee Schnaar, PhD

    Department

    Pharmacology and Molecular Sciences

  • Haughey Lab: Neurodegenerative and Neuroinfectious Disease

    Dr. Haughey directs a disease-oriented research program that address questions in basic neurobiology, and clinical neurology. The primary research interests of the laboratory are: 1. To identify biomarkers markers for neurodegenerative diseases including HIV-Associated Neurocognitive Disorders, Multiple Sclerosis, and Alzheimer’s disease. In these studies, blood and cerebral spinal fluid samples obtained from ongoing clinical studies are analyzed for metabolic profiles through a variety of biochemical, mass spectrometry and bioinformatic techniques. These biomarkers can then be used in the diagnosis of disease, as prognostic indicators to predict disease trajectory, or as surrogate markers to track the effectiveness of disease modifying interventions. 2. To better understand how the lipid components of neuronal, and glial membranes interact with proteins to regulate signal transduction associated with differentiation, motility, inflammatory signaling, survival, and neuronal excitability. 3. To understand how extracellular vesicles (exosomes) released from brain resident cells regulate neuronal excitability, neural network activity, and peripheral immune responses to central nervous system damage and infections. 4. To develop small molecule therapeutics that regulate lipid metabolism as a neuroprotective and restorative strategy for neurodegenerative conditions.
    Lab Website

    Principal Investigator

    Norman Haughey, PhD

    Department

    Neurology

    Neurosurgery