Find a Research Lab

Research Lab Results

Results per page:

  • Pediatric Cerebral Palsy and Epilepsy Lab

    The team headed by Shenandoah “Dody” Robinson, M.D., professor of neurosurgery, neurology and pediatrics, studies perinatal brain injury and repair. Employing developmentally age-appropriate models, the lab investigates neurological consequences of extremely preterm birth, including cerebral palsy, chronic pain, cognitive and behavioral impairment, epilepsy and posthemorrhagic hydrocephalus of prematurity.
    Lab Website

    Principal Investigator

    Shenandoah Robinson, MD

    Department

    Neurology

    Neurosurgery

  • Pediatric Proteome Center

    Allen Everett, M.D., and his colleagues are identifying new biomarkers — measurable, physical signs — to help in identifying pediatric heart disease. Everett is the program leader at Johns Hopkins in pediatric biomarker discovery, initially in sickle cell disease and subsequently in other pediatric clinical conditions (birth injury, congenital heart disease repair, ECMO, prematurity and pulmonary hypertension).

    Principal Investigator

    Allen D. Everett, MD

    Department

    Medicine

    Pediatrics

  • Pedro Alejandro Mendez-Tellez Lab

    Work in the Pedro Alejandro Mendez-Tellez Lab focuses on critical care medicine and acute lung injury. Recent studies include evaluating demographic and clinical factors associated with self-reported dysphagia after oral endotracheal intubation and mechanical ventilation in patients with acute lung injury. We've also analyzed orticosteroids and their relationship with delirium in critically ill patients.
  • Peisong Gao Lab

    The Peisong Gao Lab’s major focus is to understand the immunological and genetic regulation of allergic diseases. We have been involved in the identification of the genetic basis for atopic dermatitis and eczema herpeticum (ADEH) as part of the NIH Atopic Dermatitis and Vaccinia Network-Clinical Studies Consortium. Major projects in the Gao Lab include immunogenetic analysis of human response to allergen, identification of candidate genes for specific immune responsiveness to cockroach allergen, and epigenetics of food allergy (FA).

    Principal Investigator

    Peisong Gao, MD PhD

    Department

    Medicine

  • Peter Abadir Lab

    The Abadir Lab focuses on uncovering the molecular mechanisms underlying frailty, resilience, and age-related diseases to bridge the gap between basic science and clinical applications. Grounded in translational research, the lab investigates the intricate interplay between mitochondrial biology, the renin-angiotensin system (RAS), and chronic inflammation, with an emphasis on their roles in physical and cognitive decline.

    Key Areas of Research

    1. Mitochondrial and Angiotensin Biology
      • Discovery and exploration of the mitochondrial angiotensin system (MAS) as a critical regulator of cellular energy, inflammation, and resilience.
      • Investigating age-related mitochondrial dysfunction and its contribution to frailty, chronic inflammation, and neurodegeneration.
    2. Biomarker Development
      • Identification of novel biomarkers for aging-related frailty and resilience, including cell-free DNA fragments and kynurenine metabolites.
      • Development of diagnostic tools for early detection of physical and cognitive decline.
    3. Innovative Therapeutics and Bioengineering
      • Designing nano-delivery systems for targeted drug delivery to mitochondria, enhancing wound healing and reversing cellular senescence.
      • Integration of artificial intelligence and engineering to create advanced diagnostic tools for assessing frailty and aging-related conditions.
    4. AI and Technology in Aging
      • Leveraging artificial intelligence and bioengineering to address challenges in geriatric medicine through collaborations with the Johns Hopkins AI & Technology Collaboratory for Aging Research (AITC) and the Gerotech Incubator Program.

    Our Approach

    The Abadir Lab employs a multidisciplinary methodology, combining molecular biology, bioinformatics, and engineering to tackle the pressing health challenges of aging populations. By fostering collaboration between clinicians, scientists, and engineers, the lab ensures that discoveries translate into tangible benefits for older adults.

    Translational Impact

    With a focus on frailty, inflammation, and cognitive decline, the Abadir Lab contributes to the development of personalized interventions and precision medicine approaches. Our work has laid the foundation for:

    • Repurposing drugs like losartan and valsartan for treating aging-related chronic wounds.
    • Unveiling the role of mitochondrial dysregulation in Alzheimer’s disease and frailty.
    • Innovating tools for clinical assessments of resilience and functional decline.

    Collaborations and Mentorship

    The Abadir Lab is committed to training the next generation of scientists, fostering an interdisciplinary environment where students and postdocs explore cutting-edge aging science. Collaborations with the Johns Hopkins GeroTech Incubator Program and the Translational Aging Research Training Program (T32) further enrich this ecosystem of innovation.

    Join Us

    Whether you're a researcher, student, or collaborator, the Abadir Lab welcomes individuals passionate about transforming aging research into clinical practice.

    Lab Website

    Principal Investigator

    Peter Abadir, MD

    Department

    Medicine

  • Peter Agre Lab

    Work in the Peter Agre Lab focuses on the molecular makeup of human diseases, particularly malaria, hemolytic anemias and blood group antigens. In 2003, Dr. Agre earned the Nobel Prize in Chemistry for discovering aquaporin water channels. Building on that discovery, our recent research has included studies on the protective role of the brain water channel AQP4 in murine cerebral malaria, as well as defective urinary-concentrating ability as a result of a complete deficiency in aquaporin-1. We also collaborate on scientific training and research efforts with 20 Baltimore-area labs and in field studies in Zambia and Zimbabwe.

    Principal Investigator

    Peter C. Agre, MD

    Department

    Biological Chemistry

  • Peter Terry Lab

    Work in the Peter Terry Lab deals primarily with ethical questions surrounding patientsÕ end-of-life care and decision making. We explore topics such as family involvement in health care decision making, informed consent in clinical medicine and effectiveness of palliative support care. Our team has investigated the development and validation of a family decision-making self-efficacy scale. Our research has also included exploring the ethics around the allocation of lifesaving resources during a disaster.

    Principal Investigator

    Peter B Terry, MD

    Department

    Medicine

  • Peter van Zijl Laboratory

    The Peter van Zijl Laboratory focuses on developing new methodologies for using MRI and magnetic resonance spectroscopy (MRS) to study brain function and physiology. In addition, we are working to understand the basic mechanisms of the MRI signal changes measured during functional MRI (fMRI) tests of the brain. We are also mapping the wiring of the brain (axonal connections between the brains functional regions) and designing new technologies for MRI to follow where cells are migrating and when genes are expressed. A more recent interest is the development of bioorganic biodegradable MRI contrast agents. Our ultimate goal is to transform these technologies into fast methods that are compatible with the time available for multi-modal clinical diagnosis using MRI.
  • Phenotyping and Pathology Core

    The Phenotyping Core promotes functional genomics and other preclinical translational science at Johns Hopkins. We assist and collaborate in the characterization and use of genetically and phenotypically relevant animal models of disease and gene function.
  • Philip Seo Lab

    Research interests in the Philip Seo Lab include the assessment and treatment of ANCA-associated vasculitides, particularly Churg-Strauss syndrome, granulomatosis with polyangiitis and microscopic polyangiitis.

    Principal Investigator

    Philip Seo, MD

    Department

    Medicine