Research Lab Results
-
Bert Vogelstein Laboratory
The Bert Vogelstein Laboratory seeks to develop new approaches to the prevention or treatment of cancers through a better understanding of the genes and pathways underlying their pathogenesis. Our major focus is on cancers of the colon and rectum. We have shown that each colon neoplasm arises from a clonal expansion of one transformed cell. This expansion gives rise to a small benign colon tumor (called a polyp or adenoma). This clonal expansion and subsequent growth of the tumors appears to be caused by mutations in oncogenes and tumor suppressor genes, and the whole process is accelerated by defects in genes required for maintaining genetic instability. Mutations in four or five such genes are required for a malignant tumor to form, while fewer mutations suffice for benign tumorigenesis. As the mutations accumulate, the tumors become progressively more dangerous. Current studies are aimed at the further characterization of the mechanisms through which these genes act, the identification of other genes that play a role in this tumor type, and the application of this knowledge to patient management. -
Best Laboratory
The Best Laboratory focus on therapeutic vaccine development for HPV-related diseases by developing a murine model of papilloma analogous to Recurrent Respiratory Papillomatosis (RRP) for testing of DNA vaccine technology. We also work to understand the immunosuppressive tumor microenvironment that facilitates RRP development, and translate this work into novel therapies and clinical practice. -
Bhakti Hansoti Lab
Research in the Hansoti Lab centers on the intersection of public health interventions for vulnerable populations and emergency department care. The lab employs implementation science methodologies, with a particular emphasis on mixed-methods research to design, develop, and evaluate innovative, evidence-based strategies that support socially vulnerable patients.
In South Africa, the team is pioneering strategies to enhance HIV prevention and intervention delivery within emergency departments, focusing on improving HIV service delivery for patients missed within the health system and delivering preventative care strategies to patients at high risk of HIV acquisition. These efforts are concentrated at Tygerberg Hospital and Gugulethu Clinic, in partnership with the Desmond Tutu HIV Foundation.
Domestically, the lab conducts research on opioid use disorder (OUD), specifically addressing post-discharge health system challenges related to linkage to care and retention for patients prescribed medications for opioid use disorder (MOUD). This includes addressing social determinants of health to strengthen HIV services for patients who present to the ED.
Additionally, Dr. Hansoti has a dedicated focus on surveillance strategies for high-consequence pathogens in emergency departments. She serves as the Principal Investigator for the Clinical Characterization Protocol for Severe Emerging Infections (CCPSEI) and manages cohorts for both COVID-19 and mpox, in collaboration with experts in public health, epidemiology, and infectious diseases from the Johns Hopkins School of Public Health.
-
Bimal Ashar Lab
Research in the Bimal Ashar Lab focuses on preventive medicine, medical education and dietary supplements. Recent research explored medical residents' knowledge of dietary supplements and examined the reported validity and reliability of methods for evaluating continuing medical education. -
Biophotonics Imaging Technologies (BIT) Laboratory
Research in the Biophotonics Imaging Technologies (BIT) Laboratory focuses on developing optical imaging and nano-biophotonics technology to reduce the random sampling errors in clinical diagnosis, improve early disease detection and guidance of biopsy and interventions, and improve targeted therapy and monitoring treatment outcomes. The imaging technologies feature nondestructiveness, unique functional and molecular specificity, and multi-scale resolution (from organ, to architectural morphology, cellular, subcellular and molecular level). The nano-biophotonics technologies emphasize heavily on biocompatibility, multi-function integration and fast track clinical translation. These imaging and nano-biophotonics technologies can also be potentially powerful tools for basic research such as for drug screening, nondestructive assessment of engineered biomaterials in vitro and in vivo, and for studying brain functions on awake animals under normal or controlled social conditions. -
Borahay Lab: Gynecologic and Fibroids Research
Dr. Borahay's lab focuses on understanding pathobiology, developing novel treatments, and carrying out high quality clinical trials for common gynecologic problems with a special focus on uterine fibroids. Our lab also investigates the causes and novel treatments for menstrual disorders such as heavy and irregular periods. In addition, Dr. Borahay’s team explores innovative approaches to minimally invasive gynecologic surgery, focusing on outpatient procedures with less pain and faster recovery times. -
Bowditch Research Group
Bowditch Research Group conducts research regarding speech discrimination in background noise, cochlear implants and osseointegrated hearing devices -
Bradford Winters Lab
The Bradford Winters Lab conducts research on patient safety and quality of care. Our team focuses on the topics of patient care in the intensive care unit, evidence-based medicine, quality health care, and the measurement and evaluation of safety efforts. Currently our work involves evaluating pain management techniques in post-craniotomy patients, developing guidelines for policy development of patient safety initiatives and creating measures for rapid-response system outcomes.Principal Investigator
Department
-
Bradley Undem Lab
Research in the Bradley Undem Lab centers around the hypothesis that the peripheral nervous system is directly involved in the processes of inflammation. This hypothesis is being studied primarily in the central airways and sympathetic ganglia. We are addressing this in a multidisciplinary fashion, using pharmacological, electrophysiological, biochemical and anatomical methodologies. -
Brain Cancer Biology and Therapy Lab
The goal of the Johns Hopkins Brain Cancer Biology and Therapy Laboratory is to locate the genetic and genomic changes that lead to brain cancer. These molecular changes are evaluated for their potential as therapeutic targets and are often mutated genes, or genes that are over-expressed during the development of a brain cancer. The brain cancers that the Riggins Laboratory studies are medulloblastomas and glioblastomas. Medulloblastomas are the most common malignant brain tumor for children and glioblastomas are the most common malignant brain tumor for adults. Both tumors are difficult to treat, and new therapies are urgently needed for these cancers. Our laboratory uses large-scale genomic approaches to locate and analyze the genes that are mutated during brain cancer development. The technologies we now employ are capable of searching nearly all of a cancer genome for molecular alterations that can lead to cancer. The new molecular targets for cancer therapy are first located by large scale gene expression analysis, whole-genome scans for altered gene copy number and high throughput sequence analysis of cancer genomes. The alterations we find are then studied in-depth to determine how they contribute to the development of cancer, whether it is promoting tumor growth, enhancing the ability for the cancer to invade into normal tissue, or preventing the various fail-safe mechanisms programmed into our cells.