Find a Research Lab

Research Lab Results

Results per page:

  • Pulmonary Infection and Inflammation Research Lab

    The Jia lab performs basic and translational research into the mechanisms of and therapeutic strategy for viral and bacterial infection-induced inflammatory lung diseases, one of the leading causes of death in pulmonary diseases, especially for the ongoing pandemic of the SARS-CoV-2 mediated COVID-19. Our work has identified novel roles of Angiotensin-converting enzyme 2 (ACE2) in the inflammatory response to viral and bacterial lung infection and its complex contributions into the pathogenesis and disease progression and outcome of COVID-19. In seeking to translate these findings to clinical studies, we have been working on a collaboration with other investigators, developing novel diagnostic, preventive, and therapeutic tools in combating the devastating COVID-19, even in the era of effective vaccine prevention. These studies are funded by NIAID.

    Principal Investigator

    Hongpeng Jia, MD

    Department

    Surgery

  • Qian-Li Xue Lab

    The primary area of statistical expertise in the Qian-Li Xue Lab is the development and application of statistical methods for: (1) handling the truncation of information on underlying or unobservable outcomes (e.g., disability) as a result of screening, (2) missing data, including outcome (e.g., frailty) censoring by a competing risk (e.g., mortality) and (3) trajectory analysis of multivariate outcomes. Other areas of methodologic research interests include multivariate, latent variable models. In Women's Health and Aging Studies, we have closely collaborated with scientific investigators on the design and analysis of longitudinal data relating biomarkers of inflammation, hormonal dysregulation and micronutrient deficiencies to the development and progression of frailty and disability, as well as characterizing the natural history of change in cognitive and physical function over time.

    Principal Investigator

    Qian-Li Xue, PhD

    Department

    Medicine

  • Quantitative Imaging Technologies

    Research in the Quantitative Imaging Technologies lab — a component of the Imaging for Surgery, Therapy and Radiology (I-STAR) Lab — focuses on novel technologies to derive accurate structural and physiological measurements from medical images. Our team works on optimization of imaging systems and algorithms to support a variety of quantitative applications, with recent focus on orthopedics and bone health. For example, we have developed an ultra-high resolution imaging chain for an orthopedic CT system to enable in-vivo measurements of bone microstructure. Our interests also include automated methods to extract quantitative information from images, including anatomical and micro-structural measurements, and shape analysis.

    Principal Investigator

    Wojciech Zbijewski, PhD

    Department

    Biomedical Engineering

  • Rachel Damico Lab

    Work in the Rachel Damico Lab explores topics within the fields of vascular biology and pulmonary medicine, with a focus on acute lung injury and apoptosis in lung diseases. Our studies have included examining idiopathic and scleroderma-associated pulmonary arterial hypertension, vascular receptor autoantibodies, and the link between inflammation and the Warburg phenomenon in patients with pulmonary arterial hypertension. We have also researched the inhibitory factor of macrophage migration and its governing of endothelial cell sensitivity to LPS-induced apoptosis.

    Principal Investigator

    Rachel L. Damico, MD

    Department

    Medicine

  • Rachel Levine Lab

    The Rachel Levine Lab is interested in physician growth and well-being, best practices for advising medical students, and the experiences of women faculty and medical students in medicine.

    Principal Investigator

    Rachel Levine, MD MPH

    Department

    Medicine

  • Radionuclide Therapy and Dosimetry Research Lab

    The Radionuclide Therapy and Dosimetry Research Lab is focused on modeling and dosimetry analysis of radionuclide therapy to support the translation of novel targeted radionuclide therapy strategies to the clinic. The research is divided between laboratory studies and patient-specific dosimetry, radiobiological modeling studies, alpha-particle dosimetry, and mathematical modeling of radionuclide therapy. The lab is currently engaged in pre-clinical research investigating targeted alpha-emitter therapy of metastatic cancer.

    Principal Investigator

    George Sgouros, PhD

    Department

    Radiology and Radiological Science

  • Radiopharmaceutical Therapy and Dosimetry Lab

    The Radiopharmaceutical Therapy and Dosimetry (RTD) Lab has two missions: 1. Support clinical Radiopharmaceutical Therapy (RPT) trials by performing patient-specific dosimetry and developing novel methods that advance this field and illustrate the impact of a precision medicine approach to implementing treatment planning in RPT. This includes radiobiological modeling and microscale dosimetry calculations for alpha-particle emitter RPT. 2. Pre-clinical studies using novel alpha-emitter RPT agents with immune intact transgenic animal models that incorporate modeling and dosimetry to support the translation of novel targeted radionuclide therapy strategies to the clinic. In particular, identifying how to best combine RPT with complementary orthogonal-modality agents while also obtaining a basic understanding of how the treatment works and which variables have the greatest impact on efficacy and toxicity. The underlying objective is to utilize pre-clinical modeling and dosimetry to help identify an optimal therapeutic clinical trial design so as to reduce unnecessary human experimentation.

    Principal Investigator

    George Sgouros, PhD

  • Rahul Koka Lab

    Research in the Rahul Koka Lab focuses on pediatric airways, patient safety and health disparities. Recent studies have focused on the relationship between socioeconomic status and perioperative outcomes and patient safety factors related to interoperative cardiac arrests. We also performed effects analyses of the maintenance and repair of anesthetic equipment in various medical environments.
  • Rakhi Naik Lab

    The Rakhi Naik Lab studies sickle cell disease. We focus on complications related to the disease, including chronic kidney disease and venous thromboembolism. By defining the risks and factors for diseases related to the sickle cell trait, we hope to improve genetic counseling and screening and treatment recommendations. Other research in the lab examines the epidemiology and unique mechanisms of thrombosis in patients with hemoglobin disorders. Specifically, we are trying to identify mechanisms of hypercoagulability and develop treatments for patients with hemoglobinopathies.

    Principal Investigator

    Rakhi Naik, MD MHS

    Department

    Medicine

  • Rao Laboratory

    The Rao Laboratory studies the roles of intracellular cation transport in human health and disease using yeast as a model organism. Focus areas include intracellular Na+(K+)/H+ exchange and Golgi CA2+(MN+) ATPases.
    Lab Website

    Principal Investigator

    Rajini Rao, PhD

    Department

    Physiology