Research Lab Results
-
Jonathan Weiner Lab
The Jonathan Weiner Lab researches the impact of electronic health records (EHRs), e-health and other health information technology (HIT) on populations, integrated delivery systems and public health agencies.Principal Investigator
-
Jonathan Zenilman Lab
The Jonathan Zenilman lab conducts research related to sexually transmitted diseases (STDs). We are working to develop biological markers for sexual behavior to use in other research. The lab studies sexual risk behaviors in highly vulnerable populations and studies datasets from the Baltimore City Health Department to understand STD trends and behaviors. Additionally, we study nosocomial infections at Johns Hopkins Bayview Medical Center, with a focus on developing an antimicrobial control program. We also conduct clinical research related to the natural history and microbiology of chronic wounds in the outpatient setting. -
Josef Coresh Lab
Research in the Josef Coresh Lab focuses on cardiovascular epidemiology, kidney disease and genetic epidemiology. Our team uses innovative methods to quantify disease burden and consequences in the population; studies the causes and consequences of vascular disease in the heart, kidneys and brain; and works to develop a strong scientific basis for quantifying the burden, causes and consequences of kidney disease. Working in collaboration with leading laboratories and specialists, we also aim to quantify the interplay of genes and environment in health and disease. -
Joseph Carrese Lab
Research in the Joseph Carrese Lab focuses on clinical ethics and professionalism, with a particular interest in medical education and examining ethical issues in the context of cultural diversity. We collaborate with colleagues to design, implement and evaluate educational curricula addressing ethics and professionalism issues in clinical practice. -
Joseph Cofrancesco Jr. Lab
Research in the Joseph Cofrancesco Jr. Lab focuses primarily on health care for HIV-positive patients. Our recent studies have explored topics such as HIV antiretroviral treatments, HIV resistance and the long-term complications of HIV treatment. In addition, we are part of the U.S. Fat Redistribution and Metabolism (FRAM) study and have had a long-standing involvement in projects that examine metabolic and fat complications in Thailand. -
Joseph Gallo Lab
Research in the Joseph Gallo Lab focuses on the form and course of depression in older adults; treatment in primary care settings; the use of mixed methods in health services research; and the epidemiology of psychiatric disorders in the population. Using NIMH Epidemiologic Catchment Area survey data, we have conducted studies using novel statistical modeling (the MIMIC model) to explore how depression presents differently among older adults versus younger people. We are taking part in the long-term follow-up of PROSPECT (Prevention of Suicide in Primary Care Elderly – Collaborative Trial) — a randomized study of depression management in primary care practices — and have examined mortality as an outcome in the context of medical comorbidity. -
Joseph Mankowski Lab
The Joseph Mankowski Lab studies the immunopathogenesis of HIV infection using the SIV/macaque model. Our researchers use a multidisciplinary approach to dissect the mechanism underlying HIV-induced nervous system and cardiac diseases. Additionally, we study the role that host genetics play in HIV-associated cognitive disorders.Principal Investigator
Department
-
Joseph Margolick Lab
Research in the Joseph Margolick Lab focuses on the many effects of HIV/AIDS on human health. We are particularly interested in the mechanisms of T-cell loss and preservation among people infected with HIV and the evaluation of human immune functions. -
Jun Hua Lab
Dr. Hua's research has centered on the development of novel MRI technologies for in vivo functional and physiological imaging in the brain, and the application of such methods for studies in healthy and diseased brains. These include the development of human and animal MRI methods to measure functional brain activities, cerebral perfusion and oxygen metabolism at high (3 Tesla) and ultra-high (7 Tesla and above) magnetic fields. He is particularly interested in novel MRI approaches to image small blood and lymphatic vessels in the brain. Collaborating with clinical investigators, these techniques have been applied 1) to detect functional, vascular and metabolic abnormalities in the brain in neurodegenerative diseases such as Huntingdon's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD) and mental disorders such as schizophrenia; and 2) to map brain functions and cerebrovascular reactivity for presurgical planning in patients with vascular malformations, brain tumors and epilepsy. -
Jun O. Liu Laboratory
The Jun O. Liu Laboratory tests small molecules to see if they react in our bodies to find potential drugs to treat disease. We employ high-throughput screening to identify modulators of various cellular processes and pathways that have been implicated in human diseases from cancer to autoimmune diseases. Once biologically active inhibitors are identified, they will serve both as probes of the biological processes of interest and as leads for the development of new drugs for treating human diseases. Among the biological processes of interest are cancer cell growth and apoptosis, angiogenesis, calcium-dependent signaling pathways, eukaryotic transcription and translation.