Find a Research Lab

Research Lab Results

Results per page:

  • Best Laboratory

    The Best Laboratory focus on therapeutic vaccine development for HPV-related diseases by developing a murine model of papilloma analogous to Recurrent Respiratory Papillomatosis (RRP) for testing of DNA vaccine technology. We also work to understand the immunosuppressive tumor microenvironment that facilitates RRP development, and translate this work into novel therapies and clinical practice.

    Principal Investigator

    Simon R. Best, MD

    Department

    Otolaryngology - Head and Neck Surgery

  • Bert Vogelstein Laboratory

    The Bert Vogelstein Laboratory seeks to develop new approaches to the prevention or treatment of cancers through a better understanding of the genes and pathways underlying their pathogenesis. Our major focus is on cancers of the colon and rectum. We have shown that each colon neoplasm arises from a clonal expansion of one transformed cell. This expansion gives rise to a small benign colon tumor (called a polyp or adenoma). This clonal expansion and subsequent growth of the tumors appears to be caused by mutations in oncogenes and tumor suppressor genes, and the whole process is accelerated by defects in genes required for maintaining genetic instability. Mutations in four or five such genes are required for a malignant tumor to form, while fewer mutations suffice for benign tumorigenesis. As the mutations accumulate, the tumors become progressively more dangerous. Current studies are aimed at the further characterization of the mechanisms through which these genes act, the identification of other genes that play a role in this tumor type, and the application of this knowledge to patient management.
    Lab Website

    Principal Investigator

    Bert Vogelstein, MD

    Department

    Oncology

  • Zaver M. Bhujwalla Lab – Cancer Imaging Research

    Dr. Bhujwalla’s lab promotes preclinical and clinical multimodal imaging applications to understand and effectively treat cancer. The lab’s work is dedicated to the applications of molecular imaging to understand cancer and the tumor environment. Significant research contributions include 1) developing ‘theranostic agents’ for image-guided targeting of cancer, including effective delivery of siRNA in combination with a prodrug enzyme 2) understanding the role of inflammation and cyclooxygenase-2 (COX-2) in cancer using molecular and functional imaging 3) developing noninvasive imaging techniques to detect COX-2 expressing in tumors 4) understanding the role of hypoxia and choline pathways to reduce the stem-like breast cancer cell burden in tumors 5) using molecular and functional imaging to understand the role of the tumor microenvironment including the extracellular matrix, hypoxia, vascularization, and choline phospholipid metabolism in prostate and breast cancer invasion and metastasis, with the ultimate goal of preventing cancer metastasis and 6) molecular and functional imaging characterization of cancer-induced cachexia to understand the cachexia-cascade and identify novel targets in the treatment of this condition.
  • Dmitri Artemov Lab

    The Artemov lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab focuses on 1) Use of advanced dynamic contrast enhanced-MRI and activated dual-contrast MRI to perform image-guided combination therapy of triple negative breast cancer and to assess therapeutic response. 2) Development of noninvasive MR markers of cell viability based on a dual-contrast technique that enables simultaneous tracking and monitoring of viability of transplanted stems cells in vivo. 3) Development of Tc-99m and Ga-68 angiogenic SPECT/PET tracers to image expression of VEGF receptors that are involved in tumor angiogenesis and can be important therapeutic targets. 4) Development of the concept of “click therapy” that combines advantages of multi-component targeting, bio-orthogonal conjugation and image guidance and preclinical validation in breast and prostate cancer models.

    Principal Investigator

    Dmitri Artemov, PhD

    Department

    Radiology and Radiological Science

  • Early Detection of Pancreatic Cancer Laboratory

    The goal of the lab's research is to identify molecular abnormalities that can improve the outcome of patients with pancreatic cancer and those at risk of developing this disease. Much of our work is focused on translational research evaluating markers and marker technologies that can help screen patients with an increased risk of developing pancreatic cancer. Thus, marker efforts have been focused mostly on identifying markers of advanced precancerous neoplasia (PanINs and IPMNs) that could improve our ability to effectively screen patients at risk of developing pancreatic cancer. We lead or participate in a number of clinical research protocols involved in the screening and early detection of pancreatic neoplasia including the CAPS clinical trials. We maintain a large repository of specimens from cases and controls with and without pancreatic disease and use this repository to investigate candidate markers of pancreatic cancer for their utility to predict pancreatic cancer risk. In addition, we have been working to identify familial pancreatic cancer susceptibility genes and identified BRCA2 as a pancreatic cancer susceptibility gene in 1996. We participate in the PACGENE consortium and the familial pancreatic cancer sequencing initiative. My lab also investigates pancreatic cancer genetics, epigenetics, molecular pathology, tumor stromal interactions and functional analysis of candidate genes and miRNAs. Dr. Goggins is the principal investigator of a phase I/II clinical trial evaluating the Parp inhibitor, olaparib along with irinotecan and cisplatin for patients with pancreatic cancer.

    Principal Investigator

    Michael G. Goggins, MD

    Department

    Medicine

    Oncology

    Pathology

    Research Areas

  • Elizabeth M. Jaffee, M.D.

    Current projects include: The evaluation of mechanisms of immune tolerance to cancer in mouse models of breast and pancreatic cancer. We have characterized the HER-2/neu transgenic mouse model of spontaneous mammary tumors. This model demonstrates immune tolerance to the HER-2/neu gene product. This model is being used to better understand the mechanisms of tolerance to tumor. In addition, this model is being used to develop vaccine strategies that can overcome this tolerance and induce immunity potent enough to prevent and treat naturally developing tumors. More recently, we are using a genetic model of pancreatic cancer developed to understand the early inflammatory changes that promote cancer development. The identification of human tumor antigens recognized by T cells. We are using a novel functional genetic approach developed in our laboratory. Human tumor specific T cells from vaccinated patients are used to identify immune relevant antigens that are chosen based on an initial genomic screen of overexpressed gene products. Several candidate targets have been identified and the prevelence of vaccine induced immunity has been assessed . This rapid screen to identify relevant antigenic targets will allow us to begin to dissect the mechanisms of tumor immunity induction and downregulation at the molecular level in cancer patients. More recently, we are using proteomics to identify proteins involved in pancreatic cancer development. We recently identified Annexin A2 as a molecule involved in metastases. The analysis of antitumor immune responses in patients enrolled on vaccine studies. The focus is on breast and pancreatic cancers. We are atttempting to identify in vitro correlates of in vivo antitumor immunity induced by vaccine strategies developed in the laboratory and currently under study in the clinics.
  • Eberhart, Rodriguez and Raabe Lab

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goals focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies.
    Lab Website

    Principal Investigator

    Charles G. Eberhart, MD PhD

    Department

    Pathology

  • Victor Velculescu Lab

    The lab currently focuses on identifying genetic alterations in cancer affecting sensitivity and resistance to targeted therapies, and connecting such changes to key clinical characteristics and novel therapeutic approaches. We have recently developed methods that allow noninvasive characterization of cancer, including the PARE method that provided the first whole genome analysis of tumor DNA in the circulation of cancer patients. These analyses provide a window into real-time genomic analyses of cancer patients and provide new avenues for personalized diagnostic and therapeutic intervention.
    Lab Website

    Principal Investigator

    Victor E. Velculescu, MD PhD

    Department

    Oncology

    Pathology

  • Kenneth J. Pienta Lab

    The Kenneth J. Pienta laboratory has championed the concept that cancer tumorigenesis and metastasis can best be understood utilizing the principles of Ecology. As a result, the Pienta laboratory is working to develop new treatments for cancer utilizing network disruption.
    Lab Website

    Principal Investigator

    Ken Pienta, MD

    Department

    Urology

  • Kristine Glunde Lab

    The Glunde lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab is developing mass spectrometry imaging as part of multimodal molecular imaging workflows to image and elucidate hypoxia-driven signaling pathways in breast cancer. They are working to further unravel the molecular basis of the aberrant choline phospholipid metabolism in cancer. The Glunde lab is developing novel optical imaging agents for multi-scale molecular imaging of lysosomes in breast tumors and discovering structural changes in Collagen I matrices and their role in breast cancer and metastasis.