Research Lab Results
-
Saraswati Sukumar Lab
Our lab is focused on using comprehensive gene expression, methylation and sequencing and metabolomics analysis to identify alterations in breast cancer, and exploiting these for early detection and therapy. Among deferentially expressed genes, our lab has focused on the HOX genes. HOX genes are intimately involved in the development of resistance to both chemotherapy and to agents targeting the estrogen receptor. Our work explores the alternate pathways that are activated by HOX proteins leading to this resistance and novel treatments to overcome resistance in both tissue culture and xenograft models. In addition, epigenetically silenced genes and a metabolic reprogramming in tumors also trigger novel early detection and therapeutic strategies. We are testing the utility of differentiation therapy through reactivating RAR-beta in breast cancer using histone deacetylase inhibitors with great success. Also, we are targeting enzymes involved in gluconeogenesis and glycolysis with small molecule FDA-approved antimetabolites to achieve antitumor effects. -
Ruth Faden Lab
Research in the Ruth Faden Lab focuses on biomedical ethics and health policy. Our specific areas of interest include justice theory; national and global challenges in learning health care systems, health-system design and priority setting; access global investments benefits in biomedical research; and ethical challenges in biomedical science and women’s health. -
The Howard and Georgeanna Seegar Jones Reproductive Endocrinology Lab
Research in the Howard and Georgeanna Seegar Jones Reproductive Endocrinology Lab supports a broad interest in reproductive conditions, but has a particular focus on endometriosis, uterine fibroids, polycystic ovary syndrome (PCOS) and genes causing infertility. PCOS and uterine fibroids are among the most prevalent conditions leading to infertility and diseases in women, but both remain poorly understood. Studying these areas may lead to the development of new treatments or preventative therapies. -
GI Biomarkers Laboratory
The GI Biomarkers Laboratory studies gastrointestinal cancer and pre-cancer biogenesis and biomarkers. The lab is led by Dr. Stephen Meltzer, who is known for his research in the molecular pathobiology of gastrointestinal malignancy and premalignancy. Research in the lab has led to several groundbreaking genomic, epigenomic and bioinformatic studies of esophageal and colonic neoplasms, shifting the gastrointestinal research paradaigm toward genome-wide approaches. -
Josef Coresh Lab
Research in the Josef Coresh Lab focuses on cardiovascular epidemiology, kidney disease and genetic epidemiology. Our team uses innovative methods to quantify disease burden and consequences in the population; studies the causes and consequences of vascular disease in the heart, kidneys and brain; and works to develop a strong scientific basis for quantifying the burden, causes and consequences of kidney disease. Working in collaboration with leading laboratories and specialists, we also aim to quantify the interplay of genes and environment in health and disease. -
James Hamilton Lab
The main research interests of the James Hamilton Lab are the molecular pathogenesis of hepatocellular carcinoma and the development of molecular markers to help diagnose and manage cancer of the liver. In addition, we are investigating biomarkers for early diagnosis, prognosis and response to various treatment modalities. Results of this study will provide a molecular classification of HCC and allow us to identify targets for chemoprevention and treatment. Specifically, we extract genomic DNA and total RNA from liver tissues and use this genetic material for methylation-specific PCR (MSP), cDNA microarray, microRNA microarray and genomic DNA methylation array experiments. -
Constance Monitto Lab
The Constance Monitto Lab conducts clinical research on pediatric pain management as well as basic science studies on chemotherapy resistance. In our pediatric pain management research, we work to assess the impact of low-dose opioid antagonism on opioid-related side effects, such as nausea and vomiting. We also analyze data on current methods of pediatric pain management in the United States. In addition, our team uses basic science studies to assess the success of epigenetic gene regulation on the development of resistance to chemotherapeutic agents in cancer.Lab WebsitePrincipal Investigator
Department
-
Cammarato Lab
The Cammarato Lab is located in the Division of Cardiology in the Department of Medicine at the Johns Hopkins University School of Medicine. We are interested in basic mechanisms of striated muscle biology. We employ an array of imaging techniques to study “structural physiology” of cardiac and skeletal muscle. Drosophila melanogaster, the fruit fly, expresses both forms of striated muscle and benefits greatly from powerful genetic tools. We investigate conserved myopathic (muscle disease) processes and perform hierarchical and integrative analysis of muscle function from the level of single molecules and macromolecular complexes through the level of the tissue itself. Anthony Ross Cammarato, MD, is an assistant professor of medicine in the Cardiology Department. He studies the identification and manipulation of age- and mutation-dependent modifiers of cardiac function, hierarchical modeling and imaging of contractile machinery, integrative analysis of striated muscle performance and myopathic processes. -
Alison Moliterno Lab
The Alison Moliterno Lab studies the molecular pathogenesis of myeloproliferative disorders (MPDs), including polycythemia vera, essential thrombocytosis and idiopathic myelofibrosis. Our research is focused on the genetic and epigenetic lesions associated with MPDs, with the goal of improving diagnosis and treatment for these disorders. -
William B. Isaacs Laboratory
Prostate cancer is the most commonly diagnosed malignancy in men in the United States, although our understanding of the molecular basis for this disease remains incomplete. We are interested in characterizing consistent alterations in the structure and expression of the genome of human prostate cancer cells as a means of identifying genes critical in the pathways of prostatic carcinogenesis. We are focusing on somatic genomic alterations occurring in sporadic prostate cancers, as well as germline variations which confer increases in prostate cancer risk. Both genome wide and candidate gene approaches are being pursued, and cancer associated changes in gene expression analyses of normal and malignant prostate cells are being cataloged as a complementary approach in these efforts. It is anticipated that this work will assist in providing more effective methodologies to identify men at high risk for this disease, in general, and in particular, to identify new markers of prognostic and therapeutic significance that could lead to more effective management of this common disease.