Find a Research Lab

Research Lab Results

Results per page:

  • Photini Sinnis Lab

    Research in the Photini Sinnis Lab explores the fundamental biology of the pre-erythrocytic stages of malaria. Our team is focused on the sporozoite stage of Plasmodium, which is the infective stage of the malaria parasite, and the liver stages into which they develop. We use classic biochemistry, mutational analysis, and in vitro and in vivo assays to better understand the molecular interactions between the parasite and its mosquito and mammalian hosts. Our goal is to translate our findings to help develop treatments and a vaccine that target the malaria parasite.

    Principal Investigator

    Photini Sinnis, MD

    Department

    Medicine

  • Greider Lab

    The Greider lab uses biochemistry to study telomerase and cellular and organismal consequences of telomere dysfunction. Telomeres protect chromosome ends from being recognized as DNA damage and chromosomal rearrangements. Conventional replication leads to telomere shortening, but telomere length is maintained by the enzyme telomerase. Telomerase is required for cells that undergo many rounds of divisions, especially tumor cells and some stem cells. The lab has generated telomerase null mice that are viable and show progressive telomere shortening for up to six generations. In the later generations, when telomeres are short, cells die via apoptosis or senescence. Crosses of these telomerase null mice to other tumor prone mice show that tumor formation can be greatly reduced by short telomeres. The lab also is using the telomerase null mice to explore the essential role of telomerase stem cell viability. Telomerase mutations cause autosomal dominant dyskeratosis congenita. People with this disease die of bone marrow failure, likely due to stem cell loss. The lab has developed a mouse model to study this disease. Future work in the lab will focus on identifying genes that induce DNA damage in response to short telomeres, identifying how telomeres are processed and how telomere elongation is regulated.
  • George Rose Lab

    The George Rose Lab investigates protein folding, the spontaneous disorder transition that takes place under physiological conditions. The protein polymer is flexible in its unfolded state but takes on a unique native, three-dimensional form when folded. We propose that the folded state is selected from a set number of structural possibilities, each corresponding to either a distinct hydrogen-bonded arrangement of ??helices or a strand of ??sheet.

    Principal Investigator

    George D. Rose, PhD

    Department

    Biophysics and Biophysical Chemistry

  • Berger Lab

    The Berger Lab's research is focused on understanding how multi-subunit assemblies use ATP for overcoming topological challenges within the chromosome and controlling the flow of genetic information. A long-term goal is to develop mechanistic models that explain in atomic level detail how macromolecular machines transduce chemical energy into force and motion, and to determine how cells exploit and control these complexes and their activities for initiating DNA replication, shaping chromosome superstructure and executing myriad other essential nucleic-acid transactions. Our principal approaches include a blend of structural (X-ray crystallography, single-particle EM, SAXS) and solution biochemical methods to define the architecture, function, evolution and regulation of biological complexes. We also have extensive interests in mechanistic enzymology and the study of small-molecule inhibitors of therapeutic potential, the development of chemical approaches to trapping weak protein/protein and protein/nucleic acid interactions, and in using microfluidics and single-molecule approaches for biochemical investigations of protein dynamics.
  • Bradley Undem Lab

    Research in the Bradley Undem Lab centers around the hypothesis that the peripheral nervous system is directly involved in the processes of inflammation. This hypothesis is being studied primarily in the central airways and sympathetic ganglia. We are addressing this in a multidisciplinary fashion, using pharmacological, electrophysiological, biochemical and anatomical methodologies.

    Principal Investigator

    Bradley J. Undem, PhD

    Department

    Medicine

  • Xiao Group

    The objective of the Xiao Group's research is to study the dynamics of cellular processes as they occur in real time at the single-molecule and single-cell level. The depth and breadth of our research requires an interdisciplinary approach, combining biological, biochemical and biophysical methods to address compelling biological problems quantitatively. We currently are focused on dynamics of the E. coli cell division complex assembly and the molecular mechanism in gene regulation.
  • Devreotes Laboratory

    The Devreotes Laboratory is engaged in genetic analysis of chemotaxis in eukaryotic cells. Our long-term goal is a complete description of the network controlling chemotactic behavior. We are analyzing combinations of deficiencies to understand interactions among network components and carrying out additional genetic screens to identify new pathways involved in chemotaxis. A comprehensive understanding of this fascinating process should lead to control of pathological conditions such as inflammation and cancer metastasis.
    Lab Website

    Principal Investigator

    Peter N. Devreotes, PhD

    Department

    Cell Biology

  • Karen Reddy Laboratory

    The focus of the research in the Reddy Laboratory is to begin to understand how the nuclear periphery and other subcompartments contribute to general nuclear architecture and to specific gene regulation. Our research goals can be broken down into three complementary areas of research: understanding how genes are regulated at the nuclear periphery, deciphering how genes are localized (or ""addressed"") to specific nuclear compartments and how these processes are utilized in development and corrupted in disease.

    Principal Investigator

    Karen L. Reddy, PhD

    Department

    Biological Chemistry

  • Lamichhane Lab

    Our research focuses on the biology of the peptidoglycan of Mycobacterium tuberculosis, the organism that causes tuberculosis, and Mycobacteroides abscessus, a related bacterium that causes opportunistic infections. We study basic mechanisms associated with peptidoglycan physiology but with an intent to leverage our findings to develop tools that will be useful in the clinic to treat mycobacterial infections. Peptidoglycan is the exoskeleton of bacteria that not only provides structural rigidity and cell shape but also several vital physiological functions. Breaching this structure is often lethal to bacteria. We are exploring fundamental mechanisms by which bacteria synthesize and preserve their peptidoglycan. Although our lab uses genetic, biochemical and biophysical approaches to study the peptidoglycan, we pursue questions irrespective of the expertise required to answer those questions. It is through these studies that we identified synergy between two beta-lactam antibiotics against select mycobacteria.
    Lab Website

    Principal Investigator

    Gyanu Lamichhane, PhD

    Department

    Medicine

  • Laboratory for Integrated NanoDiagnostics (LIND)

    The Laboratory for Integrated NanoDiagnostics (LIND) is developing innovative technologies for accurate, fast, compact, portable, manufacturable, low-cost diagnostics for a wide variety of applications. Our current focus is a large-scale collaboration with imec, a leading microelectronics company in Leuven, Belgium, where our silicon is designed and manufactured. With major funding from miDiagnostics we are inventing solutions that are opening new avenues.

    Principal Investigator

    Stuart Campbell Ray, MD

    Department

    Medicine