Research Lab Results
-
Heng Zhu Lab
The Zhu lab is focused on characterizing the activities of large collection of proteins, building signaling networks for better understanding the mechanisms of biological processes, and identifying biomarkers in human diseases and cancers. More specifically, our group is interested in analyzing protein posttranslational modifications, and identifying important components involved in transcription networks and host-pathogen interactions on the proteomics level, and biomarkers in human IBD diseases. -
Dr. Dispenza’s laboratory focuses on allergies and IgE-mediated allergic reactions including anaphylaxis. Overall goals of the lab include understanding the mechanisms driving anaphylaxis severity and phenotypes, discovering new biomarkers for the accurate diagnosis of anaphylaxis, and developing novel strategies for the prevention of IgE-mediated reactions. One major project focuses on the prevention of anaphylaxis, for which there are no known reliable preventative therapies. They found that small molecule inhibitors of the enzyme Bruton’s tyrosine kinase (BTK), which is a key component of the IgE signaling pathway, completely suppress IgE-mediated human mast cell and basophil activation and significantly protect against death from severe anaphylaxis in humanized mice. Further, in an investigator-initiated clinical trial, they demonstrated in an investigator-initiated trial that treatment with just 2 days of the oral BTK inhibitor acalabrutinib completely prevents clinical reactivity from eating peanut in the majority of peanut-allergic adults and markedly increases the tolerance level of the remainder. These exciting data suggest that a long sought-after preventative therapy for anaphylaxis may finally be within reach.
-
Srinivasan Yegnasubramanian Lab
Dr. Yegnasubramanian directs a Laboratory of Cancer Molecular Genetics and Epigenetics at the Sidney Kimmel Comprehensive Cancer Center (SKCCC), and is also the Director of the SKCCC Next Generation Sequencing Center. Our lab research is focused on understanding the complex interplay between genetic and epigenetic alterations in carcinogenesis and disease progression, and to exploit this understanding in developing novel biomarkers for diagnosis and risk stratification as well as in identifying targets for therapeutic intervention. -
Jonathan Zenilman Lab
The Jonathan Zenilman lab conducts research related to sexually transmitted diseases (STDs). We are working to develop biological markers for sexual behavior to use in other research. The lab studies sexual risk behaviors in highly vulnerable populations and studies datasets from the Baltimore City Health Department to understand STD trends and behaviors. Additionally, we study nosocomial infections at Johns Hopkins Bayview Medical Center, with a focus on developing an antimicrobial control program. We also conduct clinical research related to the natural history and microbiology of chronic wounds in the outpatient setting. -
Kenneth J. Pienta Lab
The Kenneth J. Pienta laboratory has championed the concept that cancer tumorigenesis and metastasis can best be understood utilizing the principles of Ecology. As a result, the Pienta laboratory is working to develop new treatments for cancer utilizing network disruption. -
Molecular Oncology Laboratory
Our Molecular Oncology lab seeks to understand the genomic wiring of response and resistance to immunotherapy through integrative genomic, transcriptomic, single-cell and liquid biopsy analyses of tumor and immune evolution. Through comprehensive exome-wide sequence and genome-wide structural genomic analyses we have discovered that tumor cells evade immune surveillance by elimination of immunogenic mutations and associated neoantigens through chromosomal deletions. Additionally, we have developed non-invasive molecular platforms that incorporate ultra-sensitive measurements of circulating cell-free tumor DNA (ctDNA) to assess clonal dynamics during immunotherapy. These approaches have revealed distinct dynamic ctDNA and T cell repertoire patterns of clinical response and resistance that are superior to radiographic response assessments. Our work has provided the foundation for a molecular response-adaptive clinical trial, where therapeutic decisions are made not based on imaging but based on molecular responses derived from liquid biopsies. Overall, our group focuses on studying the temporal and spatial order of the metastatic and immune cascade under the selective pressure of immune checkpoint blockade with the ultimate goal to translate this knowledge into “next-generation” clinical trials and change the way oncologists select patients for immunotherapy. -
The Pathak Lab
The Pathak lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. We develop novel imaging methods, computational models and visualization tools to ‘make visible’ critical aspects of cancer, stroke and neurobiology. Our research broadly encompasses the following areas: Functional and Molecular Imaging; Clinical Biomarker Development; Image-based Systems Biology and Visualization and Computational Tools. We are dedicated to mentoring the next generation of imagers, biomedical engineers and visualizers. Additional information can be found at www.pathaklab.org or by emailing Dr. Pathak. -
Pediatric Proteome Center
Allen Everett, M.D., and his colleagues are identifying new biomarkers — measurable, physical signs — to help in identifying pediatric heart disease. Everett is the program leader at Johns Hopkins in pediatric biomarker discovery, initially in sickle cell disease and subsequently in other pediatric clinical conditions (birth injury, congenital heart disease repair, ECMO, prematurity and pulmonary hypertension). -
Jean Kim Lab
The Jean Kim Laboratory performs translational research in the area of chronic rhinosinusitis, with a niche interest in the pathogenesis of hyperplastic nasal polyposis. Studies encompass clinical research to basic wet laboratory research in studying the underlying immune and autoimmune mediated mechanism of polyp growth and perpetuation of disease. Human cell and tissue culture models are used. Techniques in the laboratory include cell and tissue culture, real time PCR, immunoblot, ELISA, flow cytometry, immunohistochemistry, electron microscopy, gene array analysis, and other molecular approaches including genetic knockdowns. Approaches used in Dr. Kim’s clinical study designs include prospective and retrospective analysis of patient outcomes and clinical biomarkers, as wells controlled clinical trials. -
James Hamilton Lab
The main research interests of the James Hamilton Lab are the molecular pathogenesis of hepatocellular carcinoma and the development of molecular markers to help diagnose and manage cancer of the liver. In addition, we are investigating biomarkers for early diagnosis, prognosis and response to various treatment modalities. Results of this study will provide a molecular classification of HCC and allow us to identify targets for chemoprevention and treatment. Specifically, we extract genomic DNA and total RNA from liver tissues and use this genetic material for methylation-specific PCR (MSP), cDNA microarray, microRNA microarray and genomic DNA methylation array experiments.