Find a Research Lab

Research Lab Results

Results per page:

  • Ryuya Fukunaga Lab

    The Fukunaga Lab uses multidisciplinary approaches to understand the cell biology, biogenesis and function of small silencing RNAs from the atomic to the organismal level. The lab studies how small silencing RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs), are produced and how they function. Mutations in the small RNA genes or in the genes involved in the RNA pathways cause many diseases, including cancers. We use a combination of biochemistry, biophysics, fly genetics, cell culture, X-ray crystallography and next-generation sequencing to answer fundamental biological questions and also potentially lead to therapeutic applications to human diseases.

    Principal Investigator

    Ryuya Fukunaga, PhD

    Department

    Biological Chemistry

  • Aniket Sidhaye Lab

    Dr. Sidhaye is interested in improving the care of persons with cystic fibrosis, type 1 diabetes mellitus and hospitalized person with diabetes. research topics include bone health of persons with CF undergoing lung transplant, CF-related diabetes mellitus, Care of persons with type 1 diabetes mellitus transitioning from pediatrics to adult specialty clinics, Management of hospitalized persons with diabetes.

    Principal Investigator

    Aniket Sidhaye, MD

    Department

    Medicine

  • George Rose Lab

    The George Rose Lab investigates protein folding, the spontaneous disorder transition that takes place under physiological conditions. The protein polymer is flexible in its unfolded state but takes on a unique native, three-dimensional form when folded. We propose that the folded state is selected from a set number of structural possibilities, each corresponding to either a distinct hydrogen-bonded arrangement of ??helices or a strand of ??sheet.

    Principal Investigator

    George D. Rose, PhD

    Department

    Biophysics and Biophysical Chemistry

  • Jeremy Nathans Laboratory

    The Jeremy Nathans Laboratory is focused on neural and vascular development, and the role of Frizzled receptors in mammalian development. We use gene manipulation in the mouse, cell culture models, and biochemical reconstitution to investigate the relevant molecular events underlying these processes, and to genetically mark and manipulate cells and tissues. Current experiments are aimed at defining additional Frizzled-regulated processes and elucidating the molecular mechanisms and cell biologic results of Frizzled signaling within these various contexts. Complementing these areas of biologic interest, we have ongoing technology development projects related to genetically manipulating and visualizing defined cell populations in the mouse, and quantitative analysis of mouse visual system function.
  • Clifton O. Bingham III Lab

    Research in the Clifton O. Bingham III Lab focuses on defining clinical and biochemical disease phenotypes related to therapeutic responses in rheumatoid arthritis and osteoarthritis; developing rational clinical trial designs to test new treatments; improving patient-reported outcome measures; evaluating novel imaging modalities for arthritis; and examining the role of oral health in inflammatory arthritis.

    Principal Investigator

    Clifton Oragon Bingham, MD

    Department

    Medicine

  • Berger Lab

    The Berger Lab's research is focused on understanding how multi-subunit assemblies use ATP for overcoming topological challenges within the chromosome and controlling the flow of genetic information. A long-term goal is to develop mechanistic models that explain in atomic level detail how macromolecular machines transduce chemical energy into force and motion, and to determine how cells exploit and control these complexes and their activities for initiating DNA replication, shaping chromosome superstructure and executing myriad other essential nucleic-acid transactions. Our principal approaches include a blend of structural (X-ray crystallography, single-particle EM, SAXS) and solution biochemical methods to define the architecture, function, evolution and regulation of biological complexes. We also have extensive interests in mechanistic enzymology and the study of small-molecule inhibitors of therapeutic potential, the development of chemical approaches to trapping weak protein/protein and protein/nucleic acid interactions, and in using microfluidics and single-molecule approaches for biochemical investigations of protein dynamics.
  • Bradley Undem Lab

    Research in the Bradley Undem Lab centers around the hypothesis that the peripheral nervous system is directly involved in the processes of inflammation. This hypothesis is being studied primarily in the central airways and sympathetic ganglia. We are addressing this in a multidisciplinary fashion, using pharmacological, electrophysiological, biochemical and anatomical methodologies.

    Principal Investigator

    Bradley J. Undem, PhD

    Department

    Medicine

  • Devreotes Laboratory

    The Devreotes Laboratory is engaged in genetic analysis of chemotaxis in eukaryotic cells. Our long-term goal is a complete description of the network controlling chemotactic behavior. We are analyzing combinations of deficiencies to understand interactions among network components and carrying out additional genetic screens to identify new pathways involved in chemotaxis. A comprehensive understanding of this fascinating process should lead to control of pathological conditions such as inflammation and cancer metastasis.
    Lab Website

    Principal Investigator

    Peter N. Devreotes, PhD

    Department

    Cell Biology

  • Xiao Group

    The objective of the Xiao Group's research is to study the dynamics of cellular processes as they occur in real time at the single-molecule and single-cell level. The depth and breadth of our research requires an interdisciplinary approach, combining biological, biochemical and biophysical methods to address compelling biological problems quantitatively. We currently are focused on dynamics of the E. coli cell division complex assembly and the molecular mechanism in gene regulation.
  • Nicholas Flavahan Lab

    The Nicholas Flavahan Lab primarily researches the cellular interactions and subcellular signaling pathways that control normal vascular function and regulate the initiation of vascular disease. We use biochemical and molecular analyses of cellular mediators and cell signaling mechanisms in cultured vascular cells, while also conducting physiological assessments and fluorescent microscopic imaging of signaling systems in isolated blood vessels. A major component of our research involves aterioles, tiny blood vessles that are responsible for controlling the peripheral resistance of the cardiovascular system, which help determine organ blood flow.