Find a Research Lab

Research Lab Results

Results per page:

  • Neuroimaging and Modulation Laboratory (NIMLAB)

    The neuroimaging and Modulation Laboratory (NIMLAB) investigates neural correlates of cognition and behavior using neuroimaging methods such as functional magnetic resonance imaging (fMRI) and neuromodulation techniques such as transcranial magnetic stimulation (TMS). We are looking in depth at the contributions of the cerebellum and cerebro-cerebellar circuits to cognition; the effects of chronic heavy alcohol consumption on cognition and brain activation underlying cognitive function; how aging in humans affects neural systems that are important for associative learning and stimulus awareness; and the integration of transcranial magnetic stimulation with functional MRI.
    Lab Website

    Principal Investigator

    John Desmond, PhD

    Department

    Neurology

  • Systems Neurobiology Laboratory

    The Systems neurobiology Laboratory is a group of laboratories that all study various aspects of neurobiology. These laboratories include: (1) computational neurobiology Laboratory: The goal of their research is to build bridges between brain levels from the biophysical properties of synapses to the function of neural systems. (2) computational Principles of Natural Sensory Processing: Research in this lab focuses on the computational principles of how the brain processes information. (3) Laboratory for Cognitive neuroscience: This laboratory studies the neural and genetic underpinnings of language and cognition. (4) Sloan-Swartz Center for Theoretical neurobiology: The goal of this laboratory is develop a theoretical infrastructure for modern experimental neurobiology. (5) Organization and development of visual cortex: This laboratory is studying the organization and function of neural circuits in the visual cortex to understand how specific neural components enable visual perception and to elucidate the basic neural mechanisms that underlie cortical function. (6) Neural mechanism of selective visual attention: This laboratory studies the neural mechanisms of selective visual attention at the level of the individual neuron and cortical circuit, and relates these findings to perception and conscious awareness. (7) Neural basis of vision: This laboratory studies how sensory signals in the brain become integrated to form neuronal representation of the objects that people see.
  • Agrawal Lab

    The Agrawal Lab is focused on the medical and surgical treatment of otologic and neurotologic conditions. Research is focused on the vestibular system (the inner ear balance system), and how the function of the vestibular system changes with aging. Particular focus is given to study how age-related changes in vestibular function influence mobility disability and fall risk in older individuals.
  • The Bigos Lab

    The Bigos Lab focuses on a Precision Medicine approach to the treatment of psychiatric illness. In addition, this lab employs functional neuroimaging and genetics as biomarkers in neuropsychiatric drug development. A recent study used functional MRI to test the neural effects of a drug with the potential to treat cognitive dysfunction in schizophrenia. Other studies aim to identify patient-specific variables including sex, race, and genetics that impact drug clearance and clinical response to better select and dose antipsychotics and antidepressants.
  • Mollie Meffert Lab

    The Mollie Meffert Lab studies mechanisms underlying enduring changes in brain function. We are interested in understanding how programs of gene expression are coordinated and maintained to produce changes in synaptic, neuronal and cognitive function. Rather than concentrating on single genes, our research is particularly focused on understanding the upstream processes that allow neuronal stimuli to synchronously orchestrate both up and down-regulation of the many genes required to mediate changes in growth and excitation. This process of gene target specificity is implicit to the appropriate production of gene expression programs that control lasting alterations in brain function.
    Lab Website

    Principal Investigator

    Mollie K. Meffert, MD PhD

    Department

    Biological Chemistry

  • Multiple Sclerosis Rehabilitation Research Program

    Abbey J. Hughes, Ph.D., and Meghan Beier, Ph.D., are clinical psychologists, co-investigators and grant-funded clinical researchers specializing in neurorehabilitation psychology and multiple sclerosis. Dr. Hughes' research focuses on health behaviors and their impact on cognitive dysfunction in people with multiple sclerosis. Dr. Beier's research focuses on characterizing emotional and cognitive symptoms common among people with MS, refining neuropsychological assessment techniques, and developing interventions to ameliorate or slow MS-related cognitive decline.
  • Seth Margolis Laboratory

    The Seth Margolis Laboratory studies the signaling pathways that regulate synapse formation during normal brain development to try to understand how, when these pathways go awry, human cognitive disorders develop. We use Ephexin5 to study the molecular pathways that regulate restriction of excitatory synapse formation and their relevance to the pathophysiology of Angelman syndrome.

    Principal Investigator

    Seth Shatkin Margolis, PhD

    Department

    Biological Chemistry

  • Sevil Yasar Lab

    Research areas in the Sevil Yasar Lab include dementia, cognitive decline, hydrocephalus and pharmacoepidemiology. Recently, we studied the ability of fatty acid amide hydrolase (FAAH) inhibitors to block the rewarding effects of nicotine in squirrel monkeys.

    Principal Investigator

    Sevil Yasar, MD PhD

    Department

    Medicine

  • James Knierim Laboratory

    Research in the James Knierim Laboratory attempts to understand the flow of information through the hippocampal formation and the computations performed by the various subfields of the hippocampus and its inputs from the entorhinal cortex. To address these issues, we use multi-electrode arrays to record the extracellular action potentials from scores of well-isolated hippocampal neurons in freely moving rats. These neurons, or ""place cells,"" are selectively active when the rat occupies restricted locations in its environment and help to form a cognitive map of the environment. The animal uses this map to navigate efficiently in its environment and to learn and remember important locations. These cells are thought to play a major role in the formation of episodic (autobiographical) memories. Place cells thus constitute a tremendous opportunity to investigate the mechanisms by which the brain transforms sensory input into an internal, cognitive representation of the world and then uses this representation as the framework that organizes and stores memories of past events.

    Principal Investigator

    James Knierim, PhD

    Department

    Neuroscience

  • Center on Aging and Health

    The Center on Aging and Health pursues creative approaches to solve the important health and health care problems for an aging population. Research in our center involves population-based and clinical studies of the causes, correlates, and consequences of aging-related conditions, including frailty, disability, and social isolation. We house four distinct research working groups: the Frailty and Multisystem Dysregulation Working Group; the Family and Social Resources Working Group; the Cognitive and Sensory Functions Working Group; and the Biostatistics, Design and Analysis Working Group. We provide key infrastructure, such as the statistical data core, that supports clinical- and population-based research and education with expertise in research with older adults.