Co-Director of the Institute for Fundamental Biomedical Research, Associate Director of the Center for Metabolic Origins of Disease, and Professor, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine
Department and Institute Affiliations
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital
- Johns Hopkins Center for Metabolic Origins of Disease
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine
View Publications
Contact Information
Johns Hopkins All Children's Research and Education Building
Institute for Fundamental Biomedical Research
600 Fifth Street S., 4th floor, Rm. 4402
St. Petersburg, FL 33701
P: 727-767-8928
F: 727-767-8804
E: [email protected]
Twitter: @LaszloNagyLab
Administrative program coordinator:
Lorenzo Thomas
P: 727-767-8927
E: [email protected]
Laboratory manager:
W. Kristian Berger, B.S.
P: 727-767-2745
E: [email protected]
Post-doctoral opportunities
Two fully funded post-doctoral research positions are available in the laboratory of Dr. Nagy in the Johns Hopkins All Children’s Institute for Fundamental Biomedical Research.
More information about requirements is available here. For more information or to apply, please contact Dr. Nagy at [email protected] with a CV and names of three references.
-
Education
- M.D., University Medical School of Debrecen, Debrecen, Hungary, 1991
- Ph.D., University Medical School of Debrecen, Debrecen, Hungary, 1995
Overview
Dr. Nagy is a professor of medicine in the Division of Endocrinology, Diabetes and Metabolism in the Department of Medicine and biological chemistry at the Department of Biological Chemistry in the Johns Hopkins University School of Medicine. He is the associate director of the Johns Hopkins Center for Metabolic Origins of Disease, a program that spans Johns Hopkins Medicine campuses in St. Petersburg, Florida, and Baltimore. He is also co-director of the Johns Hopkins All Children's Institute for Fundamental Biomedical Research. He has training as both a physician and as a molecular and cellular biologist.
Dr. Nagy’s research focuses on identifying and understanding how the identity of cells develops and how their differentiation contributes to human diseases. He seeks to understand how the extra- and intracellular lipid environment contributes to cellular development and differentiation, and what impact that has on components of the immune system. In this context, Dr. Nagy also studies what causes cells to use certain pieces of genetic information and not others, and what causes that process to sometimes result in diseases such as chronic inflammation, tissue degeneration or cancer. Studying these questions while evaluating the entire genome makes it more likely to discover key changes related to a particular disease and to find reliable biomarkers to monitor that disease. Those answers may lead to better diagnoses and novel therapies.
Honors and Awards
Dr. Nagy is the recipient of numerous awards, including a Boehringer Ingelheim Research Award, a Wellcome Trust Senior Research Fellowship in Biomedical Sciences, and three consecutive Howard Hughes Medical Institute International Research Scholar Awards.
He is an elected member of the Hungarian Academy of Sciences, the European Molecular Biology Organization (EMBO), Academia Europaea and The Henry Kunkel Society.
Media Mentions
- An open chat with… Laszlo Nagy (FEBS openbio, Jan. 2022)
- Video: Animal Models & Their Impact in Studying Muscle Injuries (Researcher Spotlight, Charles River)
-
Research Interests
Dr. Nagy's research interests include:
- Transcriptional regulation via lipid activated transcription factors
- Nuclear receptor regulation of organ homeostasis and metabolism
- Epigenomic and transcriptional regulation of cell type specification
- Epigenomic regulation of macrophage differentiation and function in injury and tissue repair
- Molecular and cellular interactions during muscle regeneration in health and disease
-
Select Publications
- Andreas Patsalos, Laszlo Halasz, Miguel A. Medina-Serpas, Wilhelm K. Berger, Bence Daniel, Petros Tzerpos, Mate Kiss, Gergely Nagy, Cornelius Fischer, Zoltan Simandi, Tamas Varga, Laszlo Nagy. A growth factor–expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J Exp Med (2022) 219 (1): e20210420. doi: 10.1084/jem.20210420 - VIDEO ABSTRACT
- Bence Daniel, Zsolt Czimmerer, Laszlo Halasz, Pal Boto, Zsuzsanna Kolostyak, Szilard Poliska, Wilhelm K. Berger, Petros Tzerpos, Gergely Nagy, Attila Horvath, György Hajas, Timea Cseh, Aniko Nagy, Sascha Sauer, Jean Francois-Deleuze, Istvan Szatmari, Attila Bacsi, and Laszlo Nagy. The transcription factor EGR2 is the molecular linchpin connecting STAT6 activation to the late, stable epigenomic program of alternative macrophage polarization. Genes Dev. 2020 Oct 15;34(21-22):1474–92. doi: 10.1101/gad.343038.120. - VIDEO ABSTRACT
- Patsalos A, Tzerpos P, Halasz L, Nagy G, Pap A, Giannakis N, Lyroni K, Koliaraki V, Pintye E, Dezso B, Kollias G, Spilianakis CG, Nagy L. The BACH1-HMOX1 Regulatory Axis Is Indispensable for Proper Macrophage Subtype Specification and Skeletal Muscle Regeneration. J Immunol. 2019 Sep 15;203(6):1532-1547.—VIDEO ABSTRACT
- Giannakis N, Sansbury BE, Patsalos A, Hays TT, Riley CO, Han X, Spite M, Nagy L. Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration. Nat Immunol. 2019 Apr 1. (Epub ahead of print)—VIDEO ABSTRACT
- Daniel B, Nagy G, Czimmerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, Poliska S, Tzerpos P, Kolostyak Z, Hays TT, Patsalos A, Houtman R, Sauer S, Francois-Deleuze J, Rastinejad F, Balint BL, Sweeney HL, Nagy L. The nuclear receptor PPARγ controls progressive macrophage polarization as a ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity. 2018 Oct 16;49(4):615-626. PMCID: PMC6197058—VIDEO ABSTRACT
- Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, Steiner L, Nagy B Jr, Poliska S, Banko C, Bacso Z, Schulman IG, Sauer S, Deleuze JF, Allen JE, Benko S, Nagy L. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages. Immunity. 2018 Jan 16;48(1):75-90.e6. PMCID: PMC5772169—VIDEO ABSTRACT
- Varga T, Mounier R, Patsalos A, Gogolák P, Peloquin M, Horvath A, Pap A, Daniel B, Nagy G, Pintye E, Póliska S, Cuvellier S, Larbi SB, Sansbury BE, Spite M, Brown CW, Chazaud B, Nagy L. Macrophage PPARγ, a lipid activated transcription factor controls the growth factor GDF3 and skeletal muscle regeneration. Immunity. 2016 Nov 15;45(5):1038-1051. PMCID: PMC5142832
Publication Links
Read more about Dr. Nagy's work:
-
Johns Hopkins All Children’s Hosts Important Conference on Metabolism and Immunity
Researchers from three Central Florida medical institutions — Johns Hopkins All Children’s, the H. Lee Moffitt Cancer Center and Research Institute, and the AdventHealth Translational Research Institute for Diabetes and Metabolism — co-sponsored the conference which brought together researchers from Central Florida and from around the country.
-
Johns Hopkins All Children’s Researchers Help to Explain Extreme Levels of Inflammation, Especially in Lung Diseases
For Laszlo Nagy, M.D., Ph.D., a lifelong fascination with discovering how cells work has provided the foundation for decades of work aimed at unraveling the mysteries of cell activity in the immune system. A new study reveals the “extended synergy” role for macrophages, specialized white blood cells in the immune system.
-
Student Research Training Program Launches Biomedical Science Interest
For Darby Oleksak, recent graduate and laboratory technician at Johns Hopkins All Children’s, the hospital’s Student Research Training Program helped to cultivate her interest in research and inspire her to pursue medical school.
Personnel
Andreas Patsalos, Ph.D.
Postdoctoral Researcher
Patsalos is a postdoctoral fellow in the Nagy Lab at the Institute for Fundamental Biomedical Research (Johns Hopkins University, Departments of Medicine and Biological Chemistry). He obtained his bachelor’s degree in biology, and his master’s degree in the molecular basis of human disease from the University of Crete, Greece. During his Ph.D. at the University of Debrecen, Hungary, he investigated the role and contribution of myeloid cells to skeletal muscle injury and regeneration, and revealed novel pathways involved in tissue repair. He now seeks to investigate whether any of these pathways could be manipulated in vivo to restore proper muscle regeneration and repair in disease states (i.e. Duchenne Muscular Dystrophy), using genome-wide analyses, and disease relevant pre-clinical experimental model systems.
Email: [email protected]
Twitter: @anpatsalos
LinkedIn: andreas-patsalos
Laszlo Halasz, Ph.D.
Postdoctoral Researcher
Email: [email protected]
Xiaoyan Wei, Ph.D.
Postdoctoral Researcher
Xiaoyan Wei is a postdoctoral researcher in the Nagy Lab at the Institute for Fundamental Biomedical Research at Johns Hopkins University, Departments of Medicine and Biological Chemistry. She received her bachelor’s degree in life science from Henan Normal University in China, followed by a master’s degree in biochemistry and molecular biology from Beijing Normal University in China. During her Ph.D. at the Max Planck Research Institute of Molecular Genetics/Free University of Berlin, Germany, she investigated the myopathies caused by a genetic disorder named Neurofibromatosis type 1, and revealed a cell autonomous requirement of neurofibromin I for postnatal muscle hypertrophic growth and metabolic homeostasis and the myopathy is caused by premature myogenic progenitor quiescence and can be rescued by Notch pathway inhibition. She now seeks to investigate molecular pathways in regulating skeletal muscle regeneration and related disease with mouse models and unbiased genome wide analysis.
Email: [email protected]
Wilhelm Kristian Berger, B.S.
Research Specialist
Berger received his Bachelor of Science degree in biomedical sciences from the University of Central Florida in 2018. He joined the lab of Dr. Laszlo Nagy at Sanford Burnham Prebys Medical Discovery Institute in Orlando as a research intern in his final undergraduate year. During his internship he worked on macrophage function during muscle regeneration in response to acute injury. After graduation, Berger was hired as a research technologist by Dr. Nagy’s lab, now at the Johns Hopkins University School of Medicine. His main research interest is to determine how macrophages regulate the tissue repair processes in vivo using genomic, epigenomic, and single cell approaches.
Email: [email protected]
LinkedIn: w-kristian-berger-iv-28ba18a0/
Tatiana Sieler, B.S.
Research Technician
Email: [email protected]
Darby Oleksak
Laboratory Technician
Email: [email protected]
Lab Alumni
Brian L. Murphy, Ph.D.
Nagy Lab Manager/Research Specialist II
Email: [email protected]
Miguel Medina-Serpas, B.S.
Research Specialist
Medina-Serpas worked on projects focused on better understanding the molecular and cellular interactions that regulate skeletal muscle regeneration in both healthy and diseased models. He is especially interested in the contribution of the innate immune compartment, namely the macrophage, in facilitating this process. Medina-Serpas received his Bachelor of Science degree in biomedical sciences from the University of Central Florida and is currently applying to graduate schools in pursuit of a Ph.D.