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Abstract There is growing evidence that hearing in-
volves the integration of many brain functions, including
vision, balance, somatic sensation, learning and memory,
and emotional state. Some of these integrative processes
begin at the earliest stages of the central auditory system.
In this review, we will discuss evidence that reveals
multimodal projections into the granule cell domain of the
cochlear nucleus.
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acoustic history of communication signals defines the
topic of conversation and establishes boundary conditions
for combinations of sounds uttered and sounds received.
These boundary conditions will obviously be different for
a discussion of sports than for that of cooking. As a
corollary to this idea, mismatched expectation probably
contributes to our difficulty in understanding speech with
a foreign accent. Acoustic comprehension involves the
integration of many brain functions. In this review, we
will discuss data that demonstrate multimodal projections
into the granule cell domain of the cochlear nucleus.

Introduction

It is clear that “hearing” involves more than simply the
transduction of vibrations in air. At a most basic level, we
must detect sounds. Once a sound is detected, several
processes are immediately initiated. There is a need to
localize the sound source. This task requires the two ears
and knowledge of head position. In the case of animals
with mobile ears, pinna orientation becomes important.
Proprioceptive, vestibular, and visual cues inform us
whether we or the sound is moving. We must also identify
the sound, a process involving learning and memory. That
is, sounds made by a potential mate will be different from
those made by a predator. Then there is the issue of
“acoustic streams”. The immediate acoustic history of a
moving sound source allows anticipation of its trajectory
and prediction of its future position. Likewise, the
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The granule cell domain of the cochlear nucleus

The cochlear nucleus is the first central site of neural
processing in the ascending auditory system. The mam-
malian cochlear nucleus is composed of cells that form a
magnocellular core and a microneuronal shell. The
magnocellular core is a heterogeneous aggregation of
neuron classes exhibiting distinct dendritic characteristics
(Osen 1969; Brawer et al. 1974; Hackney et al. 1990),
physiological response features (Pfeiffer 1966; Evans and
Nelson 1973; Young and Brownell 1976; Young et al.
1988; Blackburn and Sachs 1989), and projections to
higher centers (Roth et al. 1978; Adams 1979; Glenden-
ning et al. 1981; Warr 1982; Ryugo and Willard 1985;
Schofield 1995; Schofield and Cant 1996a, 1996b;
Alibardi 1998, 2000, 2001). This central core is primarily
innervated by the axons of type I spiral ganglion neurons
(Ramoén y Cajal 1909; Lorente de N6 1981; Fekete et al.
1984). By contrast, there is a thin shell of microneurons
that is situated over the medial, dorsal, and lateral surface
of the ventral cochlear nucleus and expands into layer II
of the dorsal cochlear nucleus (Fig. 1; Mugnaini et al.
1980a, 1980b; Weedman et al. 1996). Contained in the
shell there is a variety of different microneuronal types
with distinctive morphology (Fig. 2). Unlike the magno-
cellular core, the microneurons participate in local circuit
connections with the dorsal cochlear nucleus (DCN;
Mugnaini et al. 1980a, 1980b; Weedman et al. 1996;
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Fig. 1 Camera lucida drawings of coronal sections through the
cochlear nucleus of a rat. Sections are spaced at 20% intervals,
going from anterior (lower left) to posterior (upper right). The
granule cell domain (GCD) is shaded in gray. In general, the GCD
forms a thin shell lying over the dorsal, medial and lateral surface
of the ventral cochlear nucleus. It thickens in the so-called lamina
between the ventral (VCN) and dorsal cochlear nucleus (DCN), and
forms a thin sheet that extends into layer II of the DCN. ANr
auditory nerve root, AVCN anteroventral cochlear nucleus, PVCN
posteroventral cochlear nucleus

Doucet and Ryugo 1997; Hurd et al. 1999). The
microneuronal shell is referred to as the granule cell
domain (GCD) because granule cells are the most
numerous cell type (Mugnaini et al. 1980a). It does not
receive inputs from the myelinated auditory nerve fibers
(Fekete et al. 1984) but instead receives input from the
unmyelinated type II fibers (Brown et al. 1988). Thus, the
magnocellular and microneuronal regions differ in their
cellular composition, projections, and inputs from the
auditory nerve.

Inputs to the granule cell domain

Our interest concerns the synaptic inputs to the GCD. Not
surprisingly, others have previously examined this issue.
When the GCD was examined using electron microscopy,
the region featured the presence of mossy fiber endings
(McDonald and Rasmussen 1971; Mugnaini et al. 1980b).
These mossy endings in the cochlear nucleus are provoc-
ative because they resemble those of cerebellar glomeruli
(Palay and Chan-Palay 1974), characterized by relatively
large but irregular profiles, tightly packed synaptic
vesicles, moderate amounts of glycogen, and prominent
postsynaptic densities. Mossy fibers provide a major
source of cerebellar input and arise from many different
neural systems. The prominence of mossy endings in the

superficial GCD posed an important question because
their origin was unknown. They did not arise from the
auditory nerve because the type I fibers do not innervate
the GCD and type II fibers do not give rise to large
mossy-like endings.

Work in our laboratory sought to determine the origin
of these mossy fiber endings. The basic strategy has been
to place retrograde cell-markers into the GCD, and then to
observe the distribution of cell bodies that are labeled
throughout the brain stem. Injection sites, restricted to the
cochlear nucleus, labeled cells in the following nonaudi-
tory structures (among others): cuneate nucleus, external
cuneate nucleus, spinal trigeminal nucleus, Roller’s
nucleus, pontine nuclei, lateral reticular nucleus, and
inferior olive (Fig. 3). Labeled cells were also found in
auditory structures including the contralateral inferior
colliculus, ventral nucleus of the lateral lemniscus and
cochlear nucleus, and bilateral ventral and lateral nuclei
of the trapezoid body. We then placed anterograde dyes
into specific nuclei that contained retrogradely labeled
cells in order to verify the axonal projections, to analyze
terminal morphology, and to map the distribution of the
synaptic endings. This method permitted the identifica-
tion of the postsynaptic targets when using electron
microscopy.

Nonauditory inputs to the DCN have been previously
demonstrated for the cuneate nucleus (Itoh et al. 1987;
Weinberg and Rustioni 1987). This cuneo-cochlear
nucleus projection originates from the lateral part of the
cuneate nucleus, particularly in the region mediating
discriminative touch and proprioception for the neck
(head position) and scalp (pinna position). The pathway
terminates in the GCD (Fig. 4), primarily in the lamina
between DCN and VCN and in layer 2 of the DCN
(Wright and Ryugo 1996). We found that this projection
terminated as mossy fibers, characterized as large,
vesicle-filled endings surrounded by the terminal claw
of granule cell dendrites (Fig. 5). Using double-labeling
methods, cuneo-cochlear nucleus mossy fiber terminals in
the GCD were immunostained for glutamate, but not for
choline acetyltransferase or GABA (Wright and Ryugo
1996). Other mossy fibers have stained for acetylcholin-
esterase (McDonald and Rasmussen 1971) or glycine (L.
Alibardi, personal communication). These data emphasize
that mossy fibers represent a rich and varied population in
the GCD.

Anterograde tracing methods have shown that the
spinal trigeminal nucleus of the cat projected into the
GCD (Itoh et al. 1987). Retrograde labeling studies have
confirmed these observations (Haenggeli et al. 2002a,
2002b), and others have reported direct projections from
the trigeminal ganglion into the auditory brain stem
(Shore et al. 2000). It may be that cutaneous and
proprioceptive afferents of the head and neck, which are
processed through the cuneate, external cuneate, and
trigeminal nuclei, convey information related to pinna and
head position. The inputs to the GCD could mediate
information arising from neck and pinna muscle afferents
as well as from cutaneous stretch receptors around the



Fig. 2 Photomicrographs of
some representatives of neuro-
nal types in the granule cell
domain (GCD). A coronal view
through the anteroventral co-
chlear nucleus (AVCN) is
shown (top left); the box indi-
cates the area shown in the
photomicrograph (top right),
where arrows mark the border
between the GCD (microneu-
rons) and the spherical bushy
cell region. Photomicrographs
illustrate cells labeled by bio-
tinylated dextran amine (BDA):
granule cells (middle row), uni-
polar brush cells (bottom left)
and chestnut cells (bottom
right). Modified from Doucet
and Ryugo (1997)

pinnae (Millar and Basbaum 1975; Maslany et al. 1991;
Prihoda et al. 1991). Furthermore, direct projections from
the C2 dorsal root ganglion have been shown to have a
small terminal field in the medial edge of the GCD near
the VCN (Pfaller and Arvidsson 1988), and C2 stimula-
tion produces a large evoked response in the DCN
(Kanold and Young 2001). Sensory input contained in C2
arises from the skin surrounding the pinna and presum-
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ably contributes to information about pinna position. We
have reported that the nucleus of the spinal trigeminal
tract sends projections to the ipsilateral GCD and the deep
layers of the DCN (Haenggeli et al. 2002a, 2002b).
Furthermore, these projections are in the form of mossy
fiber endings, contacting the distal dendrites of granule
cells, and closely resemble the mossy fiber endings from
the cuneate nucleus. The large size of some of the labeled
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Fig. 3 Photomicrograph of a
typical injection site of Fast
Blue into the cochlear nucleus
of a rat (inset). In this coronal
view, note that the injection site
is confined entirely within the
cochlear nucleus and centered
in the granule cell domain
(GCD). Injections such as these
produce retrogradely labeled
cells (black dots) that have been
plotted for four rats onto a
standard section taken from a
stereotaxic atlas of the rat
(Swanson 1992). 4V 4th Ven-
tricle, 5N nucleus of the spinal
trigeminal, /0 vagus nucleus,
12 hypoglossal nucleus, Amb
nucleus ambiguous, Cu cuneate
nucleus, DCN dorsal cochlear
nucleus, ECu external cuneate
nucleus, ICP inferior cerebellar
peduncle, io inferior olive, LRt
lateral reticular nucleus, ml
medial lemniscus, mlf medial
longitudinal fasciculus, Pa5
paratrigeminal nucleus, py py-
ramidal tract, Ro Roller’s nu-
cleus, sol solitary tract, sp5
spinal trigeminal tract, sp51
spinal trigeminal nucleus (pars
interpolaris), VCN ventral co-
chlear nucleus. Adapted from
Haenggeli et al. (2002a)

mossy fibers, exceeding 20 pm in diameter, and the extent
of the projections into the cochlear nucleus indicate that
somatosensory cues are important to the earliest stages in
the central auditory pathway. The type of somatosensory
information carried by these projections, however, is not
entirely clear, but current data imply that cues conveying
head and pinna position are used for processing acoustic
information, perhaps in terms of orienting to a sound
source (Young et al. 1995; Davis et al. 1996; Kanold and
Young 2001).

Along these lines, we have data on a range of other
nonauditory inputs to the cochlear nucleus. For example,
on the basis of retrograde labeling studies, we have shown
that vestibular neurons residing in the medial vestibular
nucleus and Scarpa’s ganglion project into the cochlear
nucleus. These observations are consistent with reports of
primary and secondary vestibular afferents projecting into
the cochlear nucleus (Burian and Gstoettner 1988;
Kevetter and Perachio 1989; Bukowska 2002). The
projection from Roller’s nucleus, a structure involved in
the control of eye gaze (McCrea et al. 1987), into the
GCD suggests an integration of auditory and vestibular
signals, perhaps involving the coordination of gaze and
head position to a sound source.

We recently discovered that the pontine nuclei send a
prominent bilateral projection to the GCD of the VCN but
not to layer II of the DCN (Ohlrogge et al. 2001). The
pontine nuclei therefore emerge as a potentially important
crossroad for mediating ascending and descending fiber
systems. They receive ascending projections from the
cochlear nucleus (Faye-Lund 1986; Kandler and Herbert
1991) and the periolivary nuclei (Faye-Lund 1986), and
descending projections from auditory cortex (Azizi et al.
1985; Knowlton et al. 1993) as well as other cortical
fields (Potter et al. 1978; Glickstein 1997) and the inferior
colliculus (Kawamura 1975; Aitkin and Boyd 1978).
Sound stimulation has produced fos-like immunoreactiv-
ity in the pontine nuclei of the big brown bat (Qian and
Jen 1994). The proto-oncogene c-fos is expressed
throughout the central auditory pathway following acous-
tic stimulation and is interpreted as indicating sound-
activated neuronal activity (Ehret and Fischer 1991;
Rouiller et al. 1992; Brown and Liu 1995). Consistent
with these data is the observation that single-unit activity
can also be recorded in the pontine nuclei in response to
sound stimulation (Aitkin and Boyd 1978; Azizi et al.
1985; Kamada et al. 1992). There are similarities in
single-unit response properties between the pontine nuclei
and the cerebellar vermis (Aitkin and Boyd 1975), two



Fig. 4. A Plot and photomicro-
graph (inset) of neuronal mark-
er PHA-L injection in the
cuneate nucleus of a rat. /2
hypoglossal nucleus, Cuneate
cuneate nucleus, ExC external
cuneate nucleus, Gracile gracile
nucleus, Solitary nucleus of the
solitary tract, Sp5 spinal tri-
geminal nucleus. B Plots of
anterograde labeling of axons
and terminals in the cochlear
nucleus from the cuneate injec-
tion site in A. In these drawing
tube reconstructions, three sec-
tions through the cochlear nu-
cleus are illustrated. The
granule cell domain (GCD) is
shown in gray, whereas labeled
axons and terminals are plotted
in black. Note that the projec-
tions are primarily confined to
the GCD. AVCN anteroventral
cochlear nucleus, DCN dorsal
cochlear nucleus, ICP inferior
cerebellar peduncle, PVCN
posteroventral cochlear nucleus,
sp5 spinal trigeminal nucleus.
Adapted from Wright and Ryu-
go (1996)

interconnected regions. Does a separate class of pontine
neurons project exclusively to the GCD, or do the
projections arise from collaterals of axons headed to
other regions?

With pontine nuclei involved in the auditory pathway,
a system of sensory-motor circuits is evident in the
processing of acoustic information. The pontine nuclei are
well known for their projection into the cerebellar cortex
as mossy fibers (Palay and Chan-Palay 1974). Not
surprisingly, some pontine neurons project to the
parafloccular lobule of the cerebellar cortex (Azizi and
Woodward 1990; Huang et al. 1990) in the form of mossy
fibers (Glickstein 1997). The most striking feature of the
pontine projection to the GCD is that many of the endings
are mossy fiber terminals. The extent to which these
different pontine projection neurons are integrated with
each other, however, is not known, and so a number of
questions arise. Do different pontine cell groups (Mi-
hailoff et al. 1981) receive convergent or segregated
inputs from the separate input sources? Do separate
groups of pontine neurons project in turn to different
target structures? Do any of these cell groups project to
more than one target (e.g., the cerebellum and the
cochlear nucleus)? Do the signals to the GCD represent
a duplication of descending motor commands as a kind of
“efferent copy” or is there additional coding of signals?
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Functional speculations

The observations that the GCD received nonauditory
inputs, whereas the magnocellular core received auditory
inputs, fit with a notion that sensory pathways are
composed of (1) a pure sensory pathway (e.g., visual,
auditory, somatic sensory) involved in faithfully conveying
environmental stimuli, and (2) a polysensory pathway that
integrates across modalities and modulates the activity in
the “pure” pathway. Such an idea had its root in the
“specific” and “unspecific” thalamic projections to primary
sensory cortex (Lorente de N6 1938), and was refined by
the proposal concerning a “lemniscal” and a “nonlemnis-
cal” pathway for sensory processing (Graybiel 1974).
Surrounding the main sensory nuclei of the midbrain and
thalamus were multimodal nuclei. For example, adjacent to
the central nucleus of the inferior colliculus is the external
nucleus upon which converge nonauditory projections
(Schroeder and Jane 1971; Casseday et al. 1976; RoBards
1979). Likewise, the medial division of the medial
geniculate nucleus receives nonauditory input (Lund and
Webster 1967a, 1967b; Walsh and Ebner 1973) and
exhibits polysensory response properties (Erickson et al.
1964; Wepsic 1966; Love and Scott 1969; Aitkin 1973;
Ryugo and Weinberger 1978). Perhaps the initiation of the
nonlemniscal pathway begins at the earliest level of the
ascending auditory pathway in the GCD of the cochlear
nucleus.
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Fig. 5 Photomicrograph of a mossy fiber ending (fop, arrow),
labeled with neuronal marker PHA-L, in the granule cell domain
(GCD) lamina situated between the dorsal and ventral cochlear
nuclei. This particular mossy fiber is relatively large, and when
examined with the electron microscope (bottom), was found to have
features typical of cerebellar mossy fibers. The mossy fiber (M)
resembled those mossy fibers previously described (McDonald and
Rasmussen 1971; Mugnaini et al. 1980b). That is, it is irregular in
shape, filled with round synaptic vesicles, and makes many
synapses (arrows). It is surrounded by numerous dendritic profiles
(black with white outline) of granule cells, some of which penetrate
deep into the mossy fiber (white asterisk). GC granule cell. Adapted
from Wright and Ryugo (1996)

The anatomical relationship of the GCD to the dorsal
cochlear nucleus has long prompted the consideration of
the DCN as resembling a cerebellar folium (Mugnaini et
al. 1980a, 1980b; Lorente de N6 1981; Mugnaini and
Morgan 1987; Wright and Ryugo 1996; Devor 2000).
This neural circuit (Fig. 6) has been functionally studied

Cerebellum-like Sensory Structure

- Efterent copy
- Higher levels of the same modality
- Other sensory modalities

(e.g., proprioception)

Granule Cells

Sensory Inputs

Fig. 6 Schematic illustration of cerebellum-like circuitry that
resembles the mammalian dorsal cochlear nucleus. The main
output cells (gray, pyramidal cells) receive two sources of
excitatory inputs: primary sensory information (auditory nerve
fibers) onto the basal dendrites and integrated information by way
of granule cell parallel fibers. In this instance, “efferent copy”
refers to descending motor commands that are replicated and sent
via collaterals to granule cells. This projection is not to be confused
with olivocochlear efferents, which project to the subjacent small
cell cap of the cochlear nucleus, not the granule cell domain
(GCD). Inhibitory interneurons (dark) reside within the molecular
layer. The highly processed data are then sent to higher centers
(e.g., inferior colliculus). Illustration modified from Bell et al.
(1999)

in the electrosensory lobe of mormyrid electric fish where
the cerebellum-like structure has been shown to provide
“sensory subtraction” of predictable features of the
sensory environment (Bell et al. 1997, 1999). Can this
kind of comparative approach provide insight into GCD
function? It is known that the external ear (pinna)
modifies the frequency spectrum of sounds in a way that
depends on the location of the sound source (Shaw 1982;
Middlebrooks et al. 1989; Musicant et al. 1990; Rice et al.
1992). Animals with mobile pinnae present additional
cues for sound localization (Populin and Yin 1995). It
seems that certain types of predictive information could
be “subtracted” from the acoustic inflow, including self-
generated noise (e.g., vocalizations, chewing), motion,
and context.

In summary, the processing of sound is not only
defined by the circuits traditionally viewed as auditory
(e.g., pathways directly or indirectly connected to the
cochlea) but also by nonauditory variables such as neck
muscle position and tension (somatic proprioception),
head position (vestibular afferents), affective state
(arousal level), and memory. As we learn more about
the kinds of inputs to the GCD (Fig. 7), the data can
guide studies on functional circuits that lead to a greater
understanding of the integrative nature of acoustic
processing.



Fig. 7 Block diagram that
summarizes the inputs to the
granule cell domain (GCD).
The available data emphasize
the complex convergence of
inputs into this region
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