
Daniel H. O'Connor, MA, PhD
Highlights
Languages
- English
Gender
MaleJohns Hopkins Affiliations:
- Johns Hopkins School of Medicine Faculty
About Daniel H. O'Connor
Primary Academic Title
Professor of Neuroscience
Background
Dr. Daniel O’Connor is an associate professor of neuroscience at the Johns Hopkins University School of Medicine.
His research focuses on neural circuits for touch perception and his lab is working to reveal the neural circuit foundations of sensory perception and provide a framework to understand how circuit dysfunction causes mental and behavioral aspects of neuropsychiatric illness.
Dr. O’Connor earned his Ph.D. in molecular biology and neuroscience from Princeton University. He was a research specialist at the Janelia Farm Research Campus of the Howard Hughes Medical Institute before joining the Department of Neuroscience and the Brain Science Institute at Johns Hopkins in 2012.
Centers and Institutes
- Basic Biomedical Sciences, Institute for
- Brain Science Institute
- Synapse, Circuits and Cognitive Disorders Institute in the Brain Science Institute
Research Interests
Circuit dysfunction, Neural circuits, Neuropsychiatric illness, Sensory perception
Lab Website
O'Connor Lab - Lab Website
- How do brain dynamics give rise to our sensory experience of the world? The O'Connor lab works to answer this question by taking advantage of the fact that key architectural features of the mammalian brain are similar across species. This allows us to leverage the power of mouse genetics to monitor and manipulate genetically and functionally defined brain circuits during perception. We train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, we assemble a description of the relationship between neural circuit function and perception. We work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas. Our mission is to reveal the neural circuit foundations of sensory perception; to provide a framework to understand how circuit dysfunction causes mental and behavioral aspects of neuropsychiatric illness; and to help others fulfill creative potential and contribute to human knowledge.
Research Summary
Dr. O’Connor applies advanced methods of behavioral analysis, electrophysiology, two-photon calcium imaging using genetically encoded sensors, and molecular gain- and loss-of-function manipulations to study the function of the cerebral cortex circuits. He investigates how the cerebral cortex circuits produce sensory perception and the ability to pay attention and how dysfunction in these circuits manifests as neurological disease.
Dr. O’Connor and his team use mouse models to study how brain dynamics affect a person’s sensory experience of the world. They train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, they assemble a description of the relationship between neural circuit function and perception. They work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas.
By unraveling circuits for touch perception in the mouse, they expect to gain key insights into principles of mammalian brain function, and to provide a framework to understand how circuit dysfunction ultimately causes mental and behavioral aspects of neuropsychiatric illness.
Selected Publications
Automated tracking of whiskers in videos of head fixed rodents. Clack NG, O'Connor DH, Huber D, Petreanu L, Hires A, Peron S, Svoboda K, Myers EW. PLoS Comput Biol. 2012;8(7):e1002591. doi: 10.1371/journal.pcbi.1002591. Epub 2012 Jul 5.
Neural coding during active somatosensation revealed using illusory touch. O'Connor DH, Hires SA, Guo ZV, Li N, Yu J, Sun QQ, Huber D, Svoboda K. Nat Neurosci. 2013 Jul;16(7):958-65. doi: 10.1038/nn.3419. Epub 2013 Jun 2.
Procedures for behavioral experiments in head-fixed mice. Guo ZV, Hires SA, Li N, O'Connor DH, Komiyama T, Ophir E, Huber D, Bonardi C, Morandell K, Gutnisky D, Peron S, Xu NL, Cox J, Svoboda K. PLoS One. 2014 Feb 10;9(2):e88678. doi: 10.1371/journal.pone.0088678. eCollection 2014.
Reverse engineering the mouse brain. O'Connor DH, Huber D, Svoboda K. Nature. 2009 Oct 15;461(7266):923-9. doi: 10.1038/nature08539. Review.
Vibrissa-based object localization in head-fixed mice. O'Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K. J Neurosci. 2010 Feb 3;30(5):1947-67. doi: 10.1523/JNEUROSCI.3762-09.2010.
Graduate Program Affiliations
Neuroscience Graduate Program
Biochemistry, Cellular and Molecular Biology Graduate Program