Two scientists at the Johns Hopkins University School of Medicine have unraveled aspects of how DNA organizes and preserves genetic information. Newly published research by Cynthia Wolberger, Ph.D., and James Berger, Ph.D., whose labs sit side by side, takes a closer look at how the puzzle pieces of DNA machinery fit together.
NEW STUDY UNCOVERS UNEXPECTED CHANGE IN DNA ORGANIZATION
To turn genes in DNA “on” and “off,” enzymes in cells must interact with nucleosomes, which are complexes containing proteins that allow cells to organize their DNA. One such enzyme, Dot1L, is mutated in mixed lineage leukemia, a form of childhood leukemia.
A small protein tag called ubiquitin must first be attached to nucleosomes in order to help recruit Dot1L. However, how the Dot1L enzyme physically connects with the nucleosome or with the ubiquitin tag was not clear until Cynthia Wolberger, Ph.D., professor of biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine, and Evan Worden, Ph.D., a postdoctoral fellow in her lab, used an imaging tool called cryogenic electron microscopy (cryo-EM) to freeze molecules in a nucleosome and Dot1L to see how the two interact.
What they found in the study, which was published in February in Cell, was unexpected: Dot1L changes the shape of the nucleosome to bind more closely with the Dot1L enzyme.
The high-resolution images taken with cryo-EM revealed a dramatic never-before-seen change in the core of the nucleosome. As Dot1L connected, a tail from the center of the nucleosome swung up to secure the enzyme to its surface, causing a cascade of other changes in the nucleosome’s structure.